

ANCHOR DESIGN MANUAL

IMPORTANT NOTICES

- 1. Construction materials as well as the service and environmental conditions vary on different sites. Therefore the present condition of the base material and the suitability must be checked by the user. If the user is in doubt, he should contact one of Würth's Representatives.
- 2. The information and recommendations given in this Design Manual are based on the principles, formulae and safety factors defined in approval guidelines, published research results and Würth's technical instructions, the operating manuals, the setting instructions, the installation manuals and other data sheets that are believed to be correct at the time of writing. The data and values are based on the respective average values obtained from tests under laboratory or other controlled conditions. It is the users responsibility to use the data given in the light of conditions on site and taking into account the intended use of the products concerned. The user has to check the listed prerequisites and that the criteria conform with the conditions actually existing on the job-site. Whilst Würth can give general guidance and advice, the nature of Würth products means that the ultimate responsibility for selecting the right product for a particular application must lie with the customer.
- 3. All products must be used, handled and applied strictly in accordance with all current instructions for use published by Würth, i.e. technical instructions, operating manuals, setting instructions, installation manuals and others
- 4. Würth's aim is to always supply construction material with a quality and function of the latest state of technology. We therefore reserve the right to alter specifications, etc. without notice.
- 5. The given mean ultimate loads and characteristic data in the Design Manual reflect actual test results and are thus valid only for the indicated test conditions.

Due to variations in local base materials, on-site testing is required to determine performance at any specific site.

6. Würth is not obligated for direct, indirect, incidental or consequential damages, losses or expenses in connection with, or by reason of, the use of, or inability to use the products for any purpose. Implied warranties of merchantability or fitness for a particular purpose are specifically excluded.

CONTENTS

Design principles	2	
Seismic and accidental fire design situation	12	
Building-site tests	32	
Post-installed rebar connections	36	
Design examples	54	
	70	
Anchor selection	70	
Accessories	555	

1

DESIGN PRINCIPLES

1. Design Principles

1.1. General

This chapter is intended to provide the reader with the design principles related to the anchorage of structural and non-structural elements to structural components through fasteners. Fasteners, mechanical or bonded, are designed to transmit actions to concrete by different mechanisms depending on their type and mode of action.

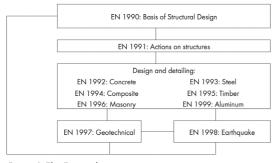


Figure 1: The Eurocodes

The design principles are primarily based on the European Standards of the Eurocode EN 1992-4, which is a European standard for the design of fastenings for use in concrete.

The Eurocode EN 1992-4 uses the fastener design theory, which applies to single fasteners and group of fasteners, on condition that the fasteners are of equal type and size and on the condition that they are joined through a common fixture.

1.2. Partial factor method

This design manual uses the partial factor method according to the European Norm EN 1990. When using the partial factor method, it shall be verified that, in all relevant design situations, no relevant limit state is exceeded when design values for actions ($E_{\rm d}$) or effects of actions and resistances ($R_{\rm d}$) are used in the design models.

$$E_d \leq R_d$$

For the selected design situations and the relevant limit states, the individual actions for the critical load cases should be combined.

Design values should be obtained by using the characteristic, or other representative values, in combination with partial and other factors $\{\gamma_{_{\rm f}},\gamma_{_{\rm M}}\}$ as defined in EN 1991 to EN 1999, the design guides for post-installed anchors and the relevant approval of the chosen anchor.

$$R_d = \frac{R_k}{\gamma_M}$$

The respective approval number is given in the relevant chapter of the anchor's design tables. Actual design requirements for post-installed anchors are published in the EN 1992-4. This Design Manual uses a simplification of these norms to allow manual verifications for anchorages.

The characteristic values and partial factors of the anchors are derived by assessments of the results of tests described in EN 1992-4. This guideline requires to meet the respective criteria of its suitability tests and tests for admissible service conditions.

1.3. Base material

The Würth anchor assortment is manufactured for a range of different base materials such as lightweight and normal weight concrete, masonry and plasterboards. The anchors presented in the following chapters are for use in normal weight concrete of different strength classes. The compressive strength is an important material property for calculating the load transmitting capacity. It is e.g. in Europe denoted by concrete strength classes which relate to the characteristic cylinder strength $f_{\rm ck,cube}$ in accordance with EN 206. The suitable strength class for each individual anchor is given in the relative European Technical Assessment (ETA). Table 1 shows the different concrete strength classes according to EN 206.

Table 1: Concrete strength classes

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders of 150 mm diameter by 300 mm height at 28 days	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cubes of 150 mm side length at 28 days	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60

1.4. Partial safety factors

Table 2: Partial safety factors for post-installed fasteners according to EN 1992-4

Failure modes Partial factor				
	Permanent o	and transient design	Accidental design	
	s	ituations	situation	
Steel failure - fasteners				
Tension		$= 1.2 \cdot f_{uk}/f_{yk} \ge 1.4$	$= 1.05 \cdot f_{uk}/f_{yk} \ge 1.25$	
Shear with and without level		$= 1.0 \cdot f_{uk}/f_{yk} \ge 1.25 \text{ when}$	$= 1.0 . f_{uk} / f_{yk} \ge 1.25$	
arm	V	$f_{uk} \le 800 \text{ N/mm}^2 \text{ and}$	when $f_{uk} \le 800 \text{ N/mm}^2$ and	
	γ_{Ms}	$f_{yk}/f_{uk} \le 0.8$	$f_{yk}/f_{uk} \le 0.8$	
		$= 1.5 \text{ when } f_{uk} > 800 \text{ N/mm}^2$	= 1.3 when $f_{uk} > 800 \text{ N/mm}^2 \text{ or}$	
		$\frac{\text{or } f_{yk}/f_{uk} > 0.8}{}$	$f_{yk}/f_{uk} > 0.8$	
Steel failure – supplement	tary reinforcement			
Tension	$\gamma_{ m Ms,re}$	= 1.15 °	= 1.0	
Concrete related failure				
Concrete cone failure, con-	$\gamma_{ m Mc}$	$= \gamma_{c}.\gamma_{inst}$	$=\gamma_{c}.\gamma_{inst}$	
crete edge failure, concrete	$\gamma_{\rm c}$	= 1.5 °	= 1.2 °	
blow-out failure, concrete pry-		≥ 1.0 for post-installed fasteners in tension, see relevant ETA		
out failure	$\gamma_{ m inst}$	= 1.0 for post-installed fasteners in shear		
Concrete splitting failure	γ_{Msp}	$=\gamma_{Mc}$		
Pull-out and combined pull-out and concrete failure	γ_{Mp}	$=\gamma_{Mc}$		

^o The values are in accordance with EN 1992-1-1. For seismic repair and strengthening of existing structures see EN 1998.

DESIGN PRINCIPLES

1.5. Würth simplified anchor design method

The Würth Simplified Anchor Design Method is based on the design concept of the EN 1992-4 and offers the engineer a convenient way of verifying the load capacity of a Würth anchor.

1.6. Failure modes

The following failure modes are considered:

Failure in Tension Loading

- 1. Steel failure
- 2. Concrete cone failure
- 3. Pull-out failure
- 4. Combined pull-out and concrete failure of bonded fasteners
- 5. Concrete splitting failure

Failure in Shear Loading

- 1. Steel failure without lever arm
- 2. Steel failure with lever arm
- 3. Concrete pry-out failure
- 4. Concrete edge failure

When both tension and shear are present, interaction effects are also considered. With above verifications and the interaction effects, it is sufficiently proven that the anchorage is able to transmit the acting loads into the concrete member.

Post-installed anchors do not always substitute e.g. falsely placed cast-in steel elements for which the load transmitting concrete member was already structurally verified. In many cases, post-installed anchors are used to add attachments in order to refurbish even new construction as well as for repair and strengthening work. Therefore, it is strongly recommended to verify if the concrete member is able to transmit the additional concentrated loads.

1.6.1. Failure due to tension loading 1.6.1.1. Steel failure

Steel failure of a fastener in tension loading occurs when the tension load exceeds the characteristic steel resistance of the fastener. The resistance is directly proportional to the governing cross sectional area of the fastener and the ultimate steel strength f_{uk} . The characteristic resistance for steel failure can be found in the relevant European Technical Assessment ETA.

1.6.1.2. Concrete cone failure

Concrete cone failure occurs when the fastening system fails due to the failure of the concrete base material of the system. Concrete failure in this case takes up the shape of a conical breakout, and it is directly proportional to the effective anchorage depth of the fastener. The following is the concrete cone failure design resistance equation according to the Würth Simplified Method:

$$N_{\text{Rd,c}} = N_{\text{Rd,c}}^0 \cdot f_{\text{b,N}} \cdot f_{\text{sx}} \cdot f_{\text{sy}} \cdot f_{\text{cx,1}} \cdot f_{\text{cx,2}} \cdot f_{\text{cy}}$$

The figure below demonstrates a typical conical breakout in concrete:

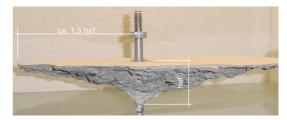


Figure 2: Concrete cone failure of a Fixanchor W-FAZ

1.6.1.3. Pull-out failure

Pull-out failure of a fastener occurs when the applied tension load exceeds the resistance induced by the expansi-

on elements of a fastener on the wall of the drilled hole. In the case of torque-controlled expansion anchors, pull-out failure can occur when the follow-up expansion is not achieved. In case of displacement-controlled expansion anchors, this can occur when the expansion cone is not properly driven into the expansion sleeve. The following is the pull-out design resistance equation according to the Würth Simplified Method:

$$N_{Rd,n} = N_{Rd,n}^0 \cdot f_{b,N}$$

1.6.1.4. Combined pull-out and concrete failure of bonded fasteners

Combined pull-out and concrete failure occurs when the tension load is higher than the resistance created by the bond between the mortar or bonding agent and the concrete. As a result of this failure, the anchor rod is pulled out from the concrete and consequently pulls out a small concrete cone in the process. The bond resistance is directly proportional to the bond strength $\tau_{\rm Rk}$ of the selected chemical mortar. Additionally, and after the introduction of the new EN 1992-4, an additional influence factor fsus has been introduced to the combined pull-out and concrete failure of bonded fasteners to take into account long-term loading and creep effects on the bonded anchor. The following is the combined pull-out and concrete cone design resistance equation according to the Würth Simplified Method:

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

1.6.1.5. Concrete splitting failure

Splitting failure occurs typically under tension loading when the fastener or group of fasteners are located near an edge or a corner and when the minimum edge distance, spacing, and concrete thickness requirements are not met. The following is the concrete splitting failure

design resistance equation according to the Würth Simplified Method:

$$\mathbf{N}_{\mathrm{Rd,sp}} = \mathbf{N}_{\mathrm{Rd,sp}}^{0} \cdot \mathbf{f}_{\mathrm{b,N}} \cdot \mathbf{f}_{\mathrm{sx,sp}} \cdot \mathbf{f}_{\mathrm{sy,sp}} \cdot \mathbf{f}_{\mathrm{cx,1,sp}} \cdot \mathbf{f}_{\mathrm{cx,2,sp}} \cdot \mathbf{f}_{\mathrm{cy,sp}} \cdot \mathbf{f}_{\mathrm{h}}$$

1.6.2. Failure due to shear loading1.6.2.1. Steel failure with/without lever arm

When the building components are sufficiently large (edge distance, spacing, and material thickness), steel failure occurs when the loading of the fastener in shear exceeds maximum resistance capacity. Steel failure resistance values are taken from the relevant fastener ETA.

1.6.2.2. Concrete pry-out

Concrete pry-out failure usually occurs in fasteners or group of fasteners with a small embedment depth in concrete. The following is the concrete pry-out design resistance equation according to the Würth Simplified Method:

$$V_{Rd,c} = N_{Rd,c} \cdot k$$

1.6.2.3. Concrete edge failure

Concrete edge failure occurs when the fastener or group of fasteners are located near an edge or corner and loaded in the direction of the edge. The following is the concrete edge failure design resistance equation according to the Würth Simplified Method:

$$V_{_{Rd,c}} = V_{_{Rd,c}}^{0} \cdot f_{_{b,V}} \cdot f_{_{s,V}} \cdot f_{_{c2,V}} \cdot f_{_{a}} \cdot f_{_{h}}$$

1.7. Influence factors

The following is a table of the general influence factors in the design resistance equations above. Tables for specific values are found in the anchor selection chapter.

DESIGN PRINCIPLES

Table 3: Influence factors

Factor	Description		
f _b	Influence of concrete strength		
f _{sx} , f _{sy}	Influence of spacing		
f _{cx,} , f _{cy}	Influence of edge distances		
f _h	Influence of concrete member thickness		
f _{hef}	Influence of the effective anchorage depth		
f _a	Influence of load direction on edge		
	resistance		
f _{sus}	Influence of sustained loads for bonded anchors		

1.8. Required verifications

1.8.1. In tension

Table 4: Required verifications for post-installed fasteners in tension

			Group of	fasteners
	Failure mode	Single fastener	Most loaded	Group
			fastener	
1	Steel failure of fastener	$N_{Ed} \leq N_{Rd,s} = \frac{N_{Rk,s}}{\gamma_{Ms}}$	$N_{Ed}^h \leq N_{Rd,s} = \frac{N_{Rk,s}}{\gamma_{Ms}}$	
2	Concrete cone failure	$N_{Ed} \leq N_{Rd,c} = \frac{N_{Rk,c}}{\gamma_{Mc}}$		$N_{Ed}^g \leq N_{Rd,c} = \frac{N_{Rk,c}}{\gamma_{Mc}}$
3	Pull-out failure of fastener °	$N_{Ed} \leq N_{Rd,p} = \frac{N_{Rk,p}}{\gamma_{Mp}}$	$N_{Ed}^h \leq N_{Rd,p} = \frac{N_{Rk,p}}{\gamma_{Mp}}$	
4	Combined pull-out and concrete failure ^b	$N_{Ed} \leq N_{Rd,p} = \frac{N_{Rk,p}}{\gamma_{Mp}}$		$N_{Ed}^g \leq N_{Rd,p} = \frac{N_{Rk,p}}{\gamma_{Mp}}$
5	Concrete splitting failure	$N_{Ed} \leq N_{Rd,sp} = \frac{N_{Rk,sp}}{\gamma_{Msp}}$		$N_{Ed}^g \leq N_{Rd,sp} = \frac{N_{Rk,sp}}{\gamma_{Msp}}$

^a Not required for post-installed bonded fasteners

^b Not required for post-installed mechanical fasteners

1.8.2. In shear

Table 5: Required verifications for post-installed fasteners in shear

			Group of	fasteners
	Failure mode	Single fastener	Most loaded fastener	Group
1	Steel failure of fastener without lever arm	$V_{Ed} \leq V_{Rd,s} = \frac{V_{Rk,s}}{\gamma_{Ms}}$	$V_{Ed}^h \leq V_{Rd,s} = \frac{V_{Rk,s}}{\gamma_{Ms}}$	
2	Steel failure of fastener with lever arm		$V_{Ed}^h \leq V_{Rd,s,M} = \frac{N_{Rk,s,M}}{\gamma_{Ms}}$	
3	Concrete pry-out failure	$V_{Ed} \leq V_{Rd,cp} = \frac{V_{Rk,cp}}{\gamma_{Mc}}$		$V_{Ed}^g \leq V_{Rd,cp} = \frac{V_{Rk,cp}}{\gamma_{Mc}}$
4	Concrete edge failure	$V_{Ed} \leq V_{Rd,c} = \frac{V_{Rk,c}}{\gamma_{Mc}}$		$V_{Ed}^g \leq V_{Rd,c} = \frac{V_{Rk,c}}{\gamma_{Mc}}$

1.8.3. Combined tension and shear loading

In the new EN 1992-4, combined tension and shear are separately evaluated for steel and concrete. This gives the designer a better and more accurate estimation of the interaction effects on the materials.

Table 6: Required verifications for post-installed fasteners without supplementary reinforcement subjected to a combined tension and shear load

	Failure mode	Verification
1	Steel failure of fastener °	$\left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \le 1$
		If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction
		shall be verified for all fasteners.
2	Failure modes other than steel failure	$\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \le 1$
		or
		$\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \le 1.2$
		With $N_{Ed} / N_{Rd,i} \le 1$ and $V_{Ed} / V_{Rd,i} \le 1$
		The largest value of $N_{Ed}/N_{Rd,i}$ and $V_{Ed}/V_{Rd,i}$ for the different failure modes shall be
		taken.

^a This verification is not required in case of shear load with lever arm

DESIGN PRINCIPLES

1.9. Geometry of anchorage

When installing post-installed anchors, the consideration of geometrical constraints is very important. The thickness of the concrete member in which the anchor has to be post-installed to later decides how deep the installer can drill a hole into the concrete, and finally the maximum effective anchorage depth of the anchor. As the anchor's pull-out resistance depends on the effective anchorage depth, the thickness of the concrete member determines the maximum load which can be transferred in almost all cases. On the other hand, the projecting length of the anchor has to be selected in order to cover tolerances of the construction and the thickness of the attachment itself.

1.9.1. The effective anchorage depth

The effective anchorage depth $h_{\rm ef}$ is one of the most important dimensions as it determines the so called concrete capacity of each anchor.

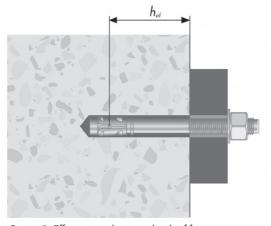


Figure 3: Effective anchorage depth of fastener

Advanced anchors normally generate concrete cone failure as this failure is the limit of each post-installed fastening system. The concrete cone failure depends on the compressive strength of concrete and on the anchorage depth $h_{\rm af}$:

$$N_{Rk,c}^0 = k_1 \cdot \sqrt{f_{ck}} \cdot h^{1.5}$$

With
$$k_{o} = k_{cr,N} = 7.7$$
 for cracked concrete and $k_{o} = k_{cr,N} = 11$ for verified non-cracked concrete

The engineer is responsible to verify if the acting tensile load is smaller than the concrete cone capacity of the anchor. From a structural design point of view, the engineer has to mention the anchor's effective anchorage depth in his or her detailed drawings. Only this value guarantees that suppliers provide anchors with the respective performance.

1.9.2. Anchor diameter

The diameter is important for calculating the steel capacity due to shear loading, but gives also information on the required diameter $d_{\rm o}$ of the drill hole in the concrete member and on the maximum clearance hole diameter $d_{\rm f}$ in the fixtures.

1.9.3. Fixture thickness

The thickness of the fixture has to be verified by the structural engineer for adequate load capacity. Minimum values can be found in the relevant product ETA.

Considering the stand-off fixture below, the projecting length of the anchor rod has to cover the gap between concrete surface and anchor plate, the thickness of the anchor plate itself and in addition have to exceed the anchor plate by the thickness of washer and nut.

Figure 4: Column fixing with stand-off fixture

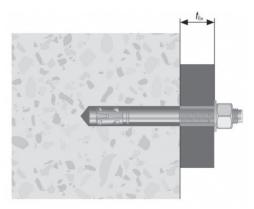


Figure 5: Fixture thickness

The maximum fixture thickness $t_{\rm fix}$ which represents the maximum useful length is difficult to decide during the designing stage, because the real conditions on building site differ mostly from the drawings. Most suppliers provide anchors with a wide range of useful lengths at same effective anchorage depth. This allows the installer to select a proper anchor in agreement with the responsible structural engineer.

1.9.4. Anchor length

The anchor length I depends on the effective anchorage depth and the useable length. In general, the anchor is longer than the sum of both, because it should consider additional length for the washer and nut. For safety reasons, the anchor should project at least one pitch of the threaded bolt. On the other hand, that part which exceeds the effective anchorage depth depends on the manufacturers developing ability to provide economic fastening systems.

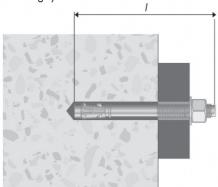


Figure 6: Anchor length

1.9.5. Concrete member thickness and the drill hole depth

The drill hole depth depends on the type of anchor. Figure 7 below shows the depth of the drill hole h_1 in case of a through fixing. This means that the anchor is installed through the bracket into the concrete. The sufficient depth of the drill hole is important to generate the correct functioning of the anchors in order to achieve the designed performance on the one hand, but on the other hand it determines the minimum concrete member thickness.

According to guidelines, the minimum component thickness in which anchors are installed is $h \ge 80$ mm.

If the thickness of the concrete member is smaller than required above, then the resistance can be reduced because of a premature splitting failure or a reduction of the shear resistance for anchorages at the edge. Furthermore, the minimum values for edge distance and spacing might not be sufficient because a splitting failure can occur during installation. Therefore, a smaller thickness of the concrete member is allowed only if the abovementioned effects are taken into account in the design and installation of the anchorage.

The minimum member thickness is given in the relevant product European Technical Approval.

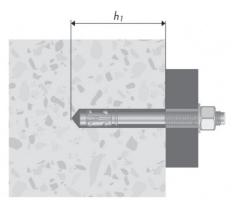


Figure 7: Drill-hole depth

DESIGN PRINCIPLES

The used symbols are listed below:

Symbol	Description
ETA CE	European Technical Assessment Key document for the calculation. It contains the performance parameters of the anchor
ICC ES	International Code Council ICC Evaluation Service Inc. (ICC ES) issues evaluation reports based on the Uniform Building Code and related codes in the USA and Canada.
	The anchor may also be used under seismic action according to ETA and/or ICC-ESR
	Fire resistance classification
LEED tested	LEED certified The system looks at numerous factors that were divided into five categories, which relate to and include the health of humans and the environment
VOC conforming	VOC Emissions class label In the context of analyzing the air a group of pollutants is analyzed, which can have serious health effects on humans. The term VOC (volatile organic compounds) is grouped together, a plurality of volatile organic compounds
NSF	NSF International The National Sanitation Foundation (NSF) is a nonprofit organization that ensures the safety of public health and environmental protection. It ensures that the materials and additives used in food, water or air are not harmful to health
THIRD-PARTY VERIFIED EDP D ISO 14025 and EN 15854	An EPD (Environmental Product Declaration) is a multipage document that serves to provide transparency to the public regarding the environmental influences of building products. It is the basis for the ecological evaluation of buildings
	For sprinkler systems

Seismic and accidental fire design situation

2.1. General

In many countries around the world, fire and seismic considerations are becoming increasingly important, as fire events and earthquakes are causing severe damages to buildings and a high number of casualties. Post-installed anchors have to be fit for those extraordinary events as they are incorporated in the structural and non-structural elements of a building, and are used to fix the services and essential lifelines of a building.

Post-installed anchors are assessed based on the valid European Assessment Documents (EAD). The different product behaviour of mechanical, bonded and concrete screw anchors, is incorporated in their specifically related EADs. This relates also to the tests for the assessment of the product behaviour under accidental loads. In this Design Manual, we give information based on the European guidelines. Information based on American guidelines would be equivalent. Only post-installed anchors that are qualified for cracked concrete and seismic applications are considered in this chapter.

Chapter 9 of the EN 1992-4 provides the requirements for the design of post-installed fasteners under seismic actions. Annex C of the same code provides more detailed information on the design method and requirements. The design explanations of part 2.5 of this chapter are primarily based on the EN 1992-4 and its annexes.

A manufacturer of post-installed anchors is not responsible for the structural verifications of an anchorage, but should provide information about the relevant and related topics to design and establish safe anchorage. Therefore, and as we consider the topic about combination of actions important, we start here with a short summary.

2.2. Design values of actions

The design concept and the required verification considering a limit state of rupture or excessive deformation based on EN 1990 clause 6.4 was briefly explained in our previous chapter. This chapter elaborates on the combinations of actions as a matter of principle. It is assumed

that the structural engineer will detail particular verifications with the relevant National Standard.

2.2.1. Combinations of actions for persistent or transient design situations (fundamental combinations)

For each critical load case, the design values of the effects of actions E_d shall be determined by combining the values of actions that are considered to occur simultaneously.

$$E_d = \sum_{j \ge 1} \gamma_{G,j} \, G_{k,j} + \gamma_{Q,1} Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \, \psi_{o,i} Q_{k,i}$$

Effects of actions that cannot exist simultaneously due to physical or functional reasons should not be considered together in combinations of actions. Depending on its uses and the form and the location of a building, the combinations of actions may be based on not more than two variable actions.

The combination factors ψ are given in Annexes of EN 1990.

Table 1: $\gamma_{G,j}$ & $\gamma_{Q,1}$ factors for permanent and variable

Persistent	Permanent	Variable
and transient	action	action
design		
situations		
favourable	$\gamma_{G,j} = 1.00$	$\gamma_{Q,1} = \gamma_{Q,i} = 0$
unfavourable	$\gamma_{G,j} = 1.35$	$\gamma_{Q,1} = \gamma_{Q,i} = 1.50$

2.2.2. Combinations of actions for accidental design situations

Combinations of actions for accidental design situations should either involve an explicit accidental action A_d (fire or impact), or refer to a situation after an accidental event ($A_d = 0$).

$$E_d = \sum_{j \geq 1} G_{k,j} + A_d + \psi_{1,1} Q_{k,1} + \sum_{i > 1} \psi_{2,i} Q_{k,i}.$$

2.2.3. Combinations of actions for seismic design situations

$$E_d = \sum_{j \ge 1} G_{k,j} + P_{Ed} + \sum_{i > 1} \psi_{2,i} Q_{k,i}.$$

2.3. Structural verifications under seismic design situations and design values of the anchor resistances for the respective failure modes

Anchors are assessed for their seismic performance characteristics according to the product relevant EAD. Only anchors, which proved their suitability for the use in cracked concrete, are accepted and qualified in seismic performance categories C1 and/or C2.

The two seismic performance categories C1/C2 are distinguished by the stringency of the tests, with C2 qualification being the more demanding. The recommended use of the C1/C2 is given in the EN 1992-4.

The performance category C1 provides fastener capacities in terms of strength (forces), while C2 in terms of both strength (forces) and displacements. Both cases take into consideration concrete cracking. In the case of C1, the maximum crack width is taken as $\triangle w = 0.5$ mm and in C2 as $\triangle w = 0.8$ mm. For C2, the performance is assessed with a test where cracks open and close (see figure 5) in addition.

The following table provides the reader with the qualification tests for each performance category:

Table 2: Seismic Qualification Tests of Fasteners

C1 Category	C2 Category
1. Pulsating tension load	1 Tests up to failure
2. Alternating shear loads	2. Pulsating tension load
	3. Alternating shear load
	4. Crack cycling

2.3.1. Qualification of anchors for category C1

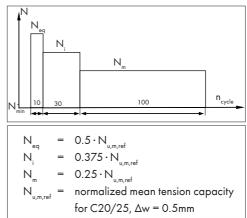


Figure 1: Tests under pulsating tension load

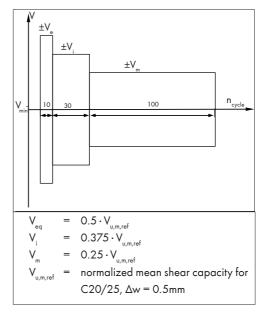


Figure 2: Tests under alternating shear load

2.3.2. Qualification of anchors for category C2

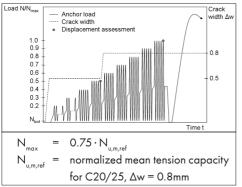


Figure 3: Tests under pulsating tension load

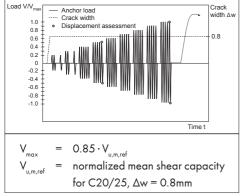


Figure 4: Tests under alternating shear load

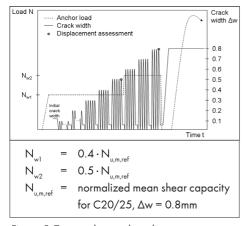


Figure 5: Tests under crack cycling

2.4. Recommended seismic performance categories for anchors

The seismic performance of anchors subjected to seismic loading is categorized by the performance categories C1 and C2. Seismic performance category C1 provides anchor capacities only in terms of resistances at ultimate limit state, while seismic performance category C2 provides anchor capacities in terms of both resistances at ultimate limit state and displacements at damage limitation state and ultimate limit state. The following tables relate to the seismic performance categories C1 and C2 to the seismicity level and building importance class. The level of seismicity is defined as a function of the product agency. S, where age is the design ground acceleration on Type A ground and S the soil factor both in accordance with EN 1998-1.

Table 3: Importance classes for buildings

Importance class	Buildings
I	Buildings of minor importance for public safety, e.g. agricultural buildings, etc.
II	Ordinary buildings, not belonging in the other categories.
III	Buildings whose seismic resistance is of importance in view of the consequences associated with a collapse, e.g. schools, assembly halls, cultural institutions etc.
IV	Buildings whose integrity during earthquakes is of vital importance for civil protection, e.g. hospitals, fire stations, power plants, etc.

Note: Importance classes I, II, III or IV correspond roughly to consequences classes CC1, CC2, CC3, respectively, defined in EN 1990:2002, Annex B.

2.5. Connections between structural elements of primary and/or secondary seismic members

Table 4: Recommended seismic performance categories for fasteners

	Seismici	Importan	ce class acc. to	EN 1998-1:20	04, 4.2.5	
1	Class	a _{g.} S°	I	II	III	IV
2	Very low ^b	a _{g.} S ≤ 0.05 g	No seismic performance category required			ired
3	low ^b	$0.05 \text{ g} < a_{g.} \text{S} \le 0.1 \text{ g}$	C1 C1 ^d or C2° C		C2	
4	> low	a _{g.} S > 0.1 g	C1 C2			

^a The values defining the seismicity levels are subject to a National Annex. The recommended values are given here.

2.6. Design options and criteria

In the design of fastenings one of the following options shall be satisfied:

- a1) Capacity design
- a2) Elastic design
- b) Design with requirements on the ductility of the anchors

2.6.1. Design without requirements on the ductility of the anchors.

It shall be assumed that anchors are non-dissipative elements and they are not able to dissipate energy by means of ductile hysteretic behaviour and that they do not contribute to the overall ductile behaviour of the structure.

a1) Capacity design

The anchor or group of anchors is designed for the maximum tension and/or shear load that can be transmitted to the fastening based on either the development of a ductile yield mechanism in the fixture or the attached element taking into account strain hardening and material over-strength or the capacity of a non-yielding attached element. For both connections between structural elements of primary and/or secondary seismic members and attachments of non-structural elements, the fastening

is designed for the maximum load that can be transmitted to the fastening based either on the development of a ductile yield mechanism in the attached steel component (see Figure 6) or in the steel base plate (see Figure 7) taking into account material over-strength effects, or on the capacity of a non-yielding attached component or structural element (see Figure 8). The assumption of a plastic hinge in the fixture (Figure 7) requires to take into account specific aspects including e.g. the redistribution of loads to the individual anchors of a group, the redistribution of the loads in the structure and the low cycle fatigue behaviour of the fixture.

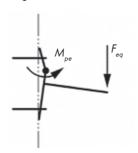


Figure 6: Yielding in attached element

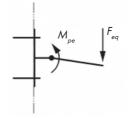


Figure 7: Yielding in baseplate

^b Definition according to EN 1998-1:2004. 3.2.1.

^c a_a = design ground acceleration on type A ground (see EN 1998-1:2004, 3.2.1),

S = soil factor (see EN 1998-1:2004, 3.2.2).

^d C1 for fixing non-structural elements to structures

[°] C2 for fixing structural elements to structures

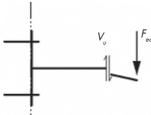


Figure 8: Capacity of attached element

a2) Elastic design

The fastening is designed for the maximum load obtained from the design load combinations that include seismic actions $A_{E,d}$ corresponding to the ultimate limit state (EN 1998-1) assuming an elastic behaviour of the fastening and of the structure. Furthermore uncertainties in the model to derive seismic actions on the fastening shall be taken into account.

The action effects for connections between structural elements of primary and/or secondary seismic members shall be derived according to EN 1998-1 with a behaviour factor q = 1.0.

For attachments of non-structural elements the action effects shall be derived with a behaviour factor $q_a = 1.0$ for the attached element.

If action effects are derived in accordance with the simplified approach given in EN 1998-1:2004, 4.3.5, those types with a behaviour factor $q_a = 1.0$ shall be multiplied by an amplification factor equal to 1.5. If the action effects are derived from a more precise model this further amplification may be omitted.

In the design of fastenings for non-structural elements subjected to seismic actions, any beneficial effects of friction due to gravity loads should be ignored.

The horizontal effects of the seismic action of nonstructural elements are determined according to Equation (4.24) of EN 1998-1.

$$F_a = \frac{S_a \cdot W_a \cdot \gamma_a}{q_a}$$

 F_a = horizontal seismic force, acting at the centre of mass of the non-structural element in the most unfavourable direction,

W = weight of the element,

S_a = seismic coefficient pertinent to non-structural elements,

γ_a = importance factor of the element.

For the following non-structural elements the importance factor γa shall not be chosen less than 1.5:

- Anchorage of machinery and equipment required for life safety systems.
- Tanks and vessels containing toxic or explosive substances considered to be hazardous to the safety of the general public.

In all other cases the importance factor γ_a of a non-structural element may be assumed $\gamma_a = 1.0$.

q = behaviour factor of the element

The seismic coefficient may be calculated as follows:

$$S_a = \alpha \cdot S \cdot \left[\left(1 + \frac{Z}{H} \right) \cdot A_a - 0.5 \right]$$

a = ratio of the design ground acceleration on type A ground, a_a , to the acceleration of gravity g,

S = soil factor,

 $A_a = Amplification factor$

$$A_a = \frac{3}{(1 + (1 - T_a/T_1)^2)}$$

or taken from Table below if one of the fundamental vibration periods is not known,

T_a = fundamental vibration period of the non-structural element,

 T₁ = fundamental vibration period of the building in the relevant direction,

 z = height of the non-structural element above the level of application of the seismic action,

 H = height of the building from the foundation or from the top of a rigid basement.

The behaviour factor q_a and seismic amplification factor A_a may be taken from the following table:

Table 5: behaviour factor q and seismic amplification factor A

Type of non-structural element	q _a	A _a
Cantilevering parapets or ornamentations		3.0
Signs and billboards	1.0	3.0
Chimneys, masts and tanks on legs acting as unbraced cantilevers along more than one half of their total height	1.0	3.0
Hazardous material storage, hazardous fluid piping		3.0
Exterior and interior walls		1.5
Partitions and facades		1.5
Chimneys, masts and tanks on legs acting as unbraced cantilevers along less than one half of their total height, or braced or guyed to the structure at or above their centre of mass		1.5
Elevators		1.5
Computer access floors, electrical and communication equipment		3.0
Conveyors	2.0	3.0
Anchorage elements for permanent cabinets and book stacks supported by the floor		1.5
Anchorage elements for false (suspended) ceilings and light fixtures		1.5
High pressure piping, fire suppression piping		3.0
Fluid piping for non-hazardous materials		3.0
Computer, communication and storage racks		3.0

b) Design with requirements on the ductility of the anchors.

The anchor or group of anchors is designed for the design actions including the seismic actions $A_{E,d}$ corresponding to the ultimate limit state (EN 1998-1). The tension steel capacity of the fastening shall be smaller than the tension capacity governed by concrete related failure modes. Sufficient elongation capacity of the anchors is required. The fastening shall not be accounted for energy dissipation in the global structural analysis or in the analysis of a non-structural element unless proper justification is provided by a non-linear time history (dynamic) analysis (according to EN 1998-1) and the hysteretic behaviour of the anchor is provided by an ETA. This approach is applicable only for the tension component of the load acting on the anchor.

Note: Option b) may not be suitable for the fastening of primary seismic members (EN 1998-1) due to the possible large non-recoverable displacements of the anchor

that may be expected. It is recommended to use option b) for the fastening of secondary seismic members. Furthermore, unless shear loads acting on the fastening are resisted by additional means, additional anchors should be provided and designed in accordance with option a1) or a2).

- Only valid for anchor of seismic category C2,
- Anchor needs to comply with a list of requirements that to ensure ductility (e.g. stretch length of 8d),
- Recommended for secondary seismic members and non-structural attachments, may not be suitable for primary seismic members (considering possibly large non-recoverable displacements of the anchor),
- In order to ensure the steel failure, additional checks must be done (comparison between the concrete and steel resistance).

2.6.3. Vertical effects

For the design of the anchors in connections between structural elements of primary and/or secondary seismic members the vertical component of the seismic action shall be taken into account according to EN 1998-1, Section 4.3.3.5.2 (2) to (4) if the vertical design ground acceleration a_{so} is greater than 2.5 m/s^2 .

The vertical effects of the seismic action $F_{\rm va}$ for non-structural elements may be neglected for the fastener when the vertical component of the design ground acceleration $a_{\rm vg}$ is less than 2.5 m/s² and the gravity loads are transferred through direct bearing of the fixture on the structure. The determination of the vertical seismic action effects of non-structural elements for use in a Country may be found in its National Annex to this EN. The recommended rule is the application of the formula:

$$F_{Va} = \frac{S_{Va} \cdot W_a \cdot \gamma_a}{q_a}$$

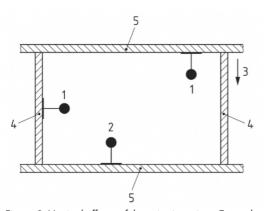


Figure 9: Vertical effects of the seismic action - Example

Key

- 1 include F_{Va}
- 2 neglect F_{V_0} if $a_{V_0} \le 2.5 \text{ m} / \text{s}^2$
- 3 gravity force
- 4 wall
- 5 ceiling or floor

2.7. Resistances and required verifications

2.7.1. General provisions

- Limited to the anchor configurations of EN 1992-4
- Stand-off installations (grouted or not) are out of scope
- If the seismic contribution to the design load combination is ≤ 20% no explicit seismic design is needed. However, a seismic approved anchor is still required
- Cracked concrete must be considered unless proven otherwise
- The maximum value of each action effect (tension and shear component of forces for an anchor) shall be considered to act simultaneously if no other more accurate model is used for the estimation of the probable simultaneous value of each action effect
- An annular gap between an anchor and its fixture should be avoided in seismic design situations. For fastenings of non-structural elements in minor noncritical applications an annular gap (diameter d_i) of the clearance hole in the fixture not larger than the value given in EN 1992-4 is allowed. The effect of the annular gap on the behaviour of fastenings shall be taken into account
- Loosening of the nut or screw shall be prevented by appropriate measures

2.7.2. Required verifications

Table 6: Required verifications

	Single Single		Anchor group		
	ranore mode	anchor	most loaded	anchor group	
	Steel failure	$N_{\text{Sd,seis}} \leq N_{\text{Rd,s,seis}}$	$N_{Sd,seis}^h \leq N_{Rd,s,seis}^h$		
<u>_</u>	Pull-out failure	$N_{\text{Sd,seis}} \leq N_{\text{Rd,p,seis}}$	$N_{\text{Sd,seis}}^{h} \leq N_{\text{Rd,p,seis}}^{h}$		
Tension	Combined pull-out and concrete failure ¹⁾	$N_{\text{Sd,seis}} \leq N_{\text{Rd,p,seis}}$		$N_{Sd,seis}^g \le N_{Rd,p,seis}^g$	
Te	Concrete cone failure	$N_{\text{Sd,seis}} \leq N_{\text{Rd,c,seis}}$		$N_{Sd,seis}^g \le N_{Rd,c,seis}^g$	
	Splitting 3)	$N_{\text{Sd,seis}} \leq N_{\text{Rd,sp,seis}}$		$N_{Sd,seis}^g \le N_{Rd,sp,seis}^g$	
L	Steel failure, shear load without lever arm ²⁾	$V_{Sd,seis} \leq V_{Rd,s,seis}$	$V_{\text{Sd,seis}}^{h} \leq V_{\text{Rd,s,seis}}^{h}$		
Shear	Concrete pry-out failure	$V_{Sd,seis} \leq V_{Rd,cp,seis}$		Vg Sd,seis ≤ Vg Rd,cp,seis	
S	Concrete edge failure	$V_{Sd,seis} \le V_{Rd,c,seis}$		Vg Sd,seis ≤ Vg Rd,c,seis	

¹⁾ Verification for bonded anchors only.

2.7.3. Design Resistance

The seismic design resistance $\rm R_{d,seis}$ (N $_{Rd,seis'}$ V $_{Rd,seis}$) of a fastening is given by:

$$R_{d,seis} = \frac{R_{k,seis}}{\gamma_{M,seis}}$$

The characteristic seismic resistance $R_{k,seis}$ ($N_{Rk,seis'}$ $V_{Rk,seis'}$ of a fastening shall be calculated for each failure mode

$$R_{k,seis} = \alpha_{gap} \cdot \alpha_{seis} \cdot R_{k,seis}^{0}$$

where

a_{gop} = reduction factor to take into account inertia effects due to an annular gap between anchor and fixture in case of shear loading; given in the relevant ETA; Note: The forces on the anchors are amplified in presence an annular gap under shear loading due to a hammer effect on the anchor. For reasons of simplicity this effect is considered only in the resistance of the fastening. In absence of information in the ETA the following values a gop may be used. These values are based on a limited number of tests.

a_{gop} = 1.0 in case of no hole clearance between anchor and fixture;

= 0.5 in case of connections with hole clearance according to the following table

²⁾ Steel failure for shear loads with lever arm is not covered.

³⁾ Verification is not required if cracked concrete is assumed and reinforcement resists the splitting forces.

External diameter d or d _{nom} 1)	[mm]	6	8	10	12	14	16	18	20	22	24	27	30
Diameter d _f of clearance hole in fixture	[mm]	7	9	12	14	16	18	20	22	24	26	30	33
1) diameter d if bolt bears against fixture; diameter d_{nom} if sleeve bears against the fixture													

a_{seis} = reduction factor to take into account the influence of large cracks and scatter of load displacement curves, see the following table

Table 7: Reduction factor a

Loading	Failure mode	Single fastener ¹⁾	Fastener group
	Steel failure	1.00	1.00
	Concrete cone failure	0.85	0.75
Tension	Pull-out failure	1.00	0.85
Ten	Combined pull-out and concrete cone failure (bonded fastener)	1.00	0.85
	Concrete splitting failure	1.00	0.85
	Concrete blow-out failure	1.00	0.85
	Steel failure	1.00	0.85
Shear	Concrete pry-out failure	0.85	0.75
<u> </u>	Concrete edge failure	1.00	0.85

¹⁾ This also applies where only one fastener in a group is subjected to tension load.

 $R_{k,\text{seis}}^{\text{o}}$ = basic characteristic seismic resistance for a given failure mode determined as follows:

	Failure mode	ETA values (C1 or C2)	Calculated value as per EN 1992-4
	Steel failure	N ⁰ _{Rk,s,seis} γ _{Ms,seis}	
Ē	Pull-out failure	N ⁰ _{Rk,p,seis} γ _{Mp,seis}	
Tension	Combined pull-out and concrete failure	$ au_{ ext{Rk,seis}} \mid \gamma_{ ext{Mp,seis}}$	$N_{Rk,p,seis}^{0}$
<u> </u>	Concrete cone failure	$\gamma_{Mc,seis}$	$N_{Rk,c,seis}^0$
	Splitting	$\gamma_{Msp,seis}$	$N_{\rm Rk,sp,seis}^{\rm O}$
_	Steel failure, shear load without lever arm	V ⁰ _{Rk,s,seis} γ _{Ms,seis}	
Shear	Concrete pry-out failure	$\gamma_{Mc,seis}$	V ^O Rk,cp,seis
55	Concrete edge failure	$\gamma_{Mc,seis}$	VO Rk,c,seis

2.7.4. Displacements

The anchor displacement under tensile and shear load at damage limitation state (DLS) shall be limited to a value $\delta_{N,\text{req}(\text{DLS})}$ and $\delta_{V,\text{req}(\text{DLS})}$ to meet requirements regarding e.g. functionality and assumed support conditions. These values shall be selected based on the requirements of the specific application. When assuming a rigid support in the analysis the designer shall establish the limiting displacement compatible to the requirement for the structural behaviour.

Note: In a number of cases, the acceptable displacement associated to a rigid support condition is considered to be in the range of 3 mm.

If deformations (displacements or rotations) are relevant for the design of the connection (such as, for example, on secondary seismic members or façade elements) it shall be demonstrated that these deformations can be accommodated by the anchors. If the anchor displacements $\delta_{N,Seis(DLS)}$ under tension loading and/or $\delta_{V,Seis(DLS)}$ under shear loading provided in the relevant ETA (for anchors qualified for seismic performance category C2) are higher than the corresponding required values $\delta_{N,req(DLS)}$ and/or $\delta_{V,req(DLS)'}$ the design resistance may be reduced according to Equations (5.11) and (5.12) to meet the required displacement limits.

$$N_{Rd,seis,reduced} = N_{Rd,seis} \cdot \frac{\delta_{N,req(DLS)}}{\delta_{N,seis(DLS)}}$$

$$V_{Rd,seis,reduced} = V_{Rd,seis} \cdot \frac{\delta_{V,req(DLS)}}{\delta_{V,seis(DLS)}}$$

If fastenings and attached elements shall be operational after an earthquake the relevant displacements have to be taken into account.

Combined Tension and Shear

Table 8: Required verifications for post-installed fasteners without supplementary reinforcement subjected to a combined tension and shear load

_						
	Failure mode	Verification				
1	Steel failure of fastener ^a	$\left(\frac{N_{Ed}}{N_{Rd,seis}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd,seis}}\right)^2 \le 1$				
		If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.				
		$\left(\frac{N_{Ed}}{N_{Rd,i,seis}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i,seis}}\right)^{1.5} \leq 1$ or				
2	Failure modes other than steel failure	$\left(\frac{N_{Ed}}{N_{Rd,i,seis}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i,seis}}\right) \le 1.2$				
		$\begin{aligned} & \text{With N}_{\text{Ed}} \ / \ \text{N}_{\text{Rd,i}} \leq 1 \ \text{and V}_{\text{Ed}} \ / \ \text{V}_{\text{Rd,i}} \leq 1 \\ & \text{The largest value of N}_{\text{Ed}} \ / \ \text{N}_{\text{Rd,i}} \ \text{and V}_{\text{Ed}} \ / \ \text{V}_{\text{Rd,i}} \ \text{for the different failure} \\ & \text{modes shall be taken.} \end{aligned}$				

^a This verification is not required in case of shear load with lever arm

Injection anchors

Anchor type	Size	Perf	ormance
		C1	C2
WIT-VIZ S	M8		
	M10	1	✓
	M12	1	1
	M16	1	\frac{1}{\sqrt{1}}
	M20	1	1
	M24	1	✓
WIT-VIZ A4	M8		
4	M10	1	1
Carried The Control of the Control o	M12	1	1
	M16	1	1
	M20	1	1
	M24	1	1
WIT-UH 300 M	M8	1	
4	M10	1	
	M12	1	1
	M16	1	✓
	M20	1	1
	M24	1	1
	M27	1	
	M30	1	
WIT-UH 300 R	Ø8	1	
	Ø10	1	
	Ø12	1	
	Ø14	1	
	Ø16	1	
	Ø20	1	
	Ø24	1	
	Ø25	1	
	Ø28	1	
	Ø32	1	

Anchor type	Size	Perf	formance
		C1	C2
WIT-PE 1000 M	M8	1	
	M10	1	
	M12	1	1
The state of the s	M16	1	1
	M20	1	1
	M24	1	1
	M27	1	
	M30	1	
WIT-PE 1000 R	Ø8	1	
Carried Construction of the Construction of th	Ø10	1	
	Ø12	1	
Harrison III	Ø14	1	
	Ø16	1	
	Ø20	1	
	Ø24	1	
	Ø25	1	
	Ø28	1	
	Ø32	1	
WIT-VM 250 M	M8	1	
-40	M10	1	
WURTH WEST	M12	1	
	M16	1	
	M20	1	
	M24	1	
	M27	1	
	M30	1	
WIT-VM 250 R	Ø8	1	
	Ø10	1	
WURTH WASHINGTON	Ø12	1	
ir 1211	Ø14	1	
	Ø16	1	
	Ø20	1	
	Ø25	1	
	Ø28	1	
	Ø32	1	

Mechanical anchors

Anchor type	Size	Standard Effective anchorage depth (mm)	Performance		
		unchorage depin (min)	C1	C2	
W-BS	Ø6	55	1	√ 1)	
	Ø8	65	1	√ 1)	
	Ø10	85	1	√ 1)	
	Ø12	100	1	√ ¹)	
	Ø14	115	1	√ 1)	
W-FAZ/S	M8	46	1	1	
	M10	60	1	/	
_,	M12	70	1	/	
	M16	85	1	/	
	M20	100	1	/	
	M24	115			
	M27	125			
W-FAZ/A4	M8	46	1	/	
	M10	60	1	1	
	M12	70	/	1	
	M16	85	1	1	
	M20	100	1	1	
	M24	125			
W-HAZ/S	10/M6	76	1	1	
	12/M8	100	/	1	
	15/M10	110	1	1	
	18/M12	130	√ 2)	/ 2)	
	24/M16	114	√ 2)	√ 2)	
	24/M16L	150	√ 2)	√ 2)	
	28/M20	185	√ ²⁾	√ ²⁾	
	32/M24	210	√ 2)	/ 2)	
W-HAZ/A4	12/M8	100	1	1	
	15/M10	110	1	1	
	18/M12	130	1	1	
	24/M16	150	√ ²⁾	√ 2)	

¹⁾ Only for the galvanized version. C2 is not suitable for A4 and HCR

²⁾ Not suitable for W-HAZ-SK

2.8. Structural verifications under fire exposure and design values of the anchor resistances for the respective failure modes

In general, the duration of the fire resistance of anchorages depends mainly on the configuration of the structure itself (base materials, anchorage including the fixture). It is not possible to classify an anchor for its fire resistance. This evaluation concept includes the behaviour of the anchorage in concrete and the parts outside the concrete. The influence of the fixation is considered unfavourable.

The following information is for anchorages in normal weight concrete with a compressive strength of at least C 20/25 and at most C 50/60 used for normal structures under fire exposure. The determination of the duration of the fire resistance is according to the conditions given in EN 13501-2 using the "Standard ISO time-temperature Curve" (STC). This evaluation can be used as a basis for including a fire resistance class in European Technical Approvals (ETA) for metal anchors for use in cracked concrete. The base material (reinforced concrete), in which the anchor shall be anchored, shall have at least the same duration of fire resistance as the anchorage itself.

Local spalling is possible at fire attack. To avoid any influence of the spalling on the anchorage, the concrete member must be designed according to EN 1992-1-2. The members shall be made of concrete with quartzite additives and have to be protected from direct moisture; and the moisture content of the concrete has to be like in dry internal conditions respectively. The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value in the approval.

2.8.1. Design concepts

When using the **Simplified design concept** for all load directions and failure modes the limit values must be observed (characteristic resistance in ultimate limit state under fire exposure $F_{\rm Rk,fi(t)}$), which were developed by general test series and are on the safe side. Tests with

fire exposure are not necessary when using the simplified design concept.

When using the **Experimental determination** for all load directions and failure modes the required investigations are given. The duration of fire resistance of the anchor can be determined from the results.

A combination of the design concepts is possible. For example: the duration of the fire resistance for individual failure modes (e.g. steel failure) can be determined by tests and for other failure modes (e.g. pull-out and concrete failure) the limit values can be determined using the simplified design method.

	Simplified Design Concept	Experimental Determination
Metal anchors	~	~
Bonded anchors	evaluation only for steel failure (special experimental determination)	special experimental determination

It can be assumed that for fastening of facade systems, the load bearing behaviour of the specific screwed in plastic anchor with a diameter 10 mm and a metal screw with a diameter 7 mm and a $h_{\rm ef}$ of 50 mm and a plastic sleeve made of polyamide has a sufficient resistance to fire at least 90 minutes (R90) if the applied load (no permanent tension load) is $\leq 0.8 {\rm kN}$.

General provisions:

- Valid for anchors with an European Technical Approval (ETA), which can be used in cracked and non-cracked concrete
- The determination covers anchors with a fire attack from one side only. If the fire attack is from more than one side, the design method may be taken only, if the edge distance of the anchor is c ≥ 300 mm and ≥ 2 h_{sf}
- The determination is valid for unprotected anchors
- The characteristic spacing and edge distance for anchorages near the edge under fire exposure are taken as follows s_{crN} = 2c_{crN} = 4h_{ef}

- $\gamma_{M,fi}$ = 1.0 for steel failure and concrete related failure modes under shear loading. For concrete related failure modes under tension $\gamma_{M,fi}$ = 1.0 γ_{inst}
- N_{Rk,p}, N^o_{Rk,c}, V^o_{Rk,c} characteristic resistances of a single anchor in cracked concrete C20/25 for concrete cone failure under normal temperature

2.8.2. Resistance

2.8.2.1. Fire resistance capacity in tension and shear

The following table provides a summary of the resistances to fire according to the various failure modes of fasteners. The overview shows values from the simplified design concept, which should be used if no values are provided in the corresponding European Technical Product Specification. The values of the simplified design concept are considered conservative. For more details on the resistance equations, please refer to annex D of the EN 1992-4.

Table 9: Fire resistance under the different failure modes

	Failure mode	Simplified Design Concept	Experimental Determination
	Steel failure	$N_{Rk,s,fi} = A_s \cdot \sigma_{Rk,s,fi}$	given in ETA
Tension	Pull-out failure	$N_{Rk,p,fi(90)} = 0.25 \cdot N_{Rk,p}$ $N_{Rk,p,fi(120)} = 0.2 \cdot N_{Rk,p}$	given in ETA
Tens	Concrete cone failure	$\begin{split} N_{Rk,c,fi(90)}^{0} &= \frac{h_{ef}}{200} \cdot N_{Rk,c}^{0} \le N_{Rk,c}^{0} \\ N_{Rk,c,fi(120)}^{0} &= 0.8 \cdot \frac{h_{ef}}{200} \cdot N_{Rk,c}^{0} \le N_{Rk,c}^{0} \end{split}$	$\begin{split} N_{Rk,c,fi(90)}^{0} &= \frac{h_{ef}}{200} \cdot N_{Rk,c}^{0} \le N_{Rk,c}^{0} \\ N_{Rk,c,fi(120)}^{0} &= 0.8 \cdot \frac{h_{ef}}{200} \cdot N_{Rk,c}^{0} \le N_{Rk,c}^{0} \end{split}$
	Steel failure, shear load without lever arm	$V_{Rk,s,fi} = A_s \cdot \sigma_{Rk,s,fi}$	given in ETA
Į.	Steel failure, shear load with lever arm	$M_{Rk,s,fi}^0 = 1.2 \cdot W_{el} \cdot \sigma_{Rk,s,fi}$	given in ETA
Shear	Concrete pry-out failure	$V_{Rk,cp,fi(t)}^{0} = k \cdot N_{Rk,c,fi(t)}^{0}$	$V_{Rk,cp,fi(t)}^{0} = k \cdot N_{Rk,c,fi(t)}^{0}$
	Concrete edge failure	$V_{Rk,c,fi(90)}^{0} = 0.25 \cdot V_{Rk,c}^{0}$ $V_{Rk,c,fi(120)}^{0} = 0.2 \cdot V_{Rk,c}^{0}$	$V_{Rk,c,fi(90)}^{0} = 0.25 \cdot V_{Rk,c}^{0}$ $V_{Rk,c,fi(120)}^{0} = 0.2 \cdot V_{Rk,c}^{0}$

Table 10: Characteristic tension strength of an unprotected anchor made of C-steel according to EN 10025 in case of fire exposure

Fastener bolt / thread diameter	Embedment depth	Characteristic tension strength								
	h _{ef}	♂ _{Rk,s,fi(t)}								
mm	mm	N/mm²								
		30 min (R15 to R30)	60 min (R45 and R60)	90 min (R90)	120 min (≤ R120)					
Ø 6/M6	≥ 30	10	9	7	5					
Ø 8/M8	≥ 30	10	9	7	5					
Ø 10 / M10	≥ 40	15	13	10	8					
≥ Ø 12 / M12	≥ 50	20	15	13	10					

Table 11: Characteristic tension strength of an unprotected anchor made of at least steel grade A4 according to the EN ISO 3506 series in case of fire exposure

Fastener bolt / thread diameter	Embedment depth	Characteristic tension strength								
	h _{ef}	$\sigma_{ m Rk,s,fi}$								
mm	mm	N/mm²								
		30 min (R15 to R30)	60 min (R45 and R60)	90 min (R90)	120 min (≤ R120)					
ø 6/M6	≥ 30	10	9	7	5					
Ø 8/M8	≥ 30	20	16	12	10					
Ø 10 / M10	≥ 40	25	20	16	14					
≥ Ø 12 / M12	≥ 50	30	25	20	16					

2.8.2.2. Required verifications for combined tension and shear loads

	Failure mode	Verification				
1	$\left(\frac{N_{Ed}}{N_{Rd,fi}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd,fi}}\right)^2 \leq 1$ Steel failure of fastener a					
		If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.				
		$\left(\frac{N_{Ed}}{N_{Rd,i,fi}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i,fi}}\right)^{1.5} \le 1$				
		or				
2	Failure modes other than steel failure	$\left(\frac{N_{Ed}}{N_{Rd,i,fi}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i,fi}}\right) \le 1.2$				

^a This verification is not required in case of shear load with lever arm

Fire loads Bonded Anchors

Anchor type	Size	Effective anchorage	Max tensile loading (kN) for specified fire resistance time 1) 2)				Authority
Andre Type	(mm)	depth (mm)	R30	R60	R90	R120	/ No.
WIT-BS	Ø10		4.40	3.30	2.30	1.70	
	Ø12		7.30	5.80	4.20	3.40	Z-21.1- 2075
	Ø14		10.30	8.20	5.90	4.80	20,0
WIT-VIZ S	M8	50	1.04	0.47	-	-	
	M10	60	2.50	1.45	0.39	-	A A E D A
E HANNAMAN TO THE PARTY OF THE	M12	80	5.80	3.80	1.81	0.81	MFPA Leipzig Nr.
n <u>1111 mm</u>	M16	125	7.62	5.81	4.01	3.11	GS 3.2/
	M20	170	13.02	9.75	6.48	4.84	18-075-1
	M24	170	13.02	9.75	6.48	4.84	
WIT-VIZ A4	M8	50	1.04	0.47	-	-	
	M10	60	2.50	1.45	0.39	-	
	M12	80	5.80	3.80	1.81	0.81	MFPA Leipzig Nr.
- in this many	M16	125	7.62	5.81	4.01	3.11	GS 3.2/
	M20	170	13.02	9.75	6.48	4.84	18-0 <i>75</i> -1
	M24	170	13.02	9.75	6.48	4.84	
WIT-UH 300 M ³⁾	M8	80	0.71	0.56	0.41	0.32	
<	M10	90	1.42	1.11	0.79	0.61	
	M12	110	3.03	2.28	1.60	1.18	l
	M16	125	5.65	4.24	2.98	2.20	Ingenieur- büro Thiele
	M20	170	8.82	6.62	4.66	3.43	21807de
	M24	210	12.71	9.53	6.71	4.94	9.12.2018
	M27	240	16.52	12.39	8.72	6.43	
	M30	270	20.20	15.15	10.66	7.85	
WIT-PE 1000 M ³⁾	M8	80	1.10	0.88	0.33	0.00	
II	M10	90	1.74	1.39	0.65	0.00	
	M12	110	3.03	2.28	1.60	0.88	1
4.0	M16	125	5.65	4.24	2.77	1.54	Ingenieur- büro Thiele
	M20	170	8.82	6.62	4.66	3.43	22022e
	M24	210	12.71	9.53	6.71	4.94	14.05.2020
	M27	240	16.52	12.39	8.72	6.43	
	M30	270	20.20	15.15	10.66	7.85	

Anchor type	Size	Effective anchorage	Max tensile loading (kN) for specified fire resistance time 1) 2)				Authority
Allellot Type		depth (mm)	R30	R60	R90	R120	/ No.
WIT-VM 250 M ⁴⁾	M8	≥ 80	1.60	1.10	0.60	0.30	
	M10	≥ 90	2.60	1.80	0.90	0.50	
* ************************************	M12	≥ 110	3.40	2.60	1.80	0.50	Technische Universität
(n 11400 - 33)	M16	≥ 125	6.20	4.80	3.40	2.70	Kaiserslau- tern Project
	M20	≥ 170	9.80	<i>7</i> .50	5.30	4.20	Number EBB
	M24	≥ 210	14.00	10.80	7.60	6.00	170019_ 6de
	M27	≥ 250	18.30	14.10	9.90	7.90	
	M30	≥ 280	22.30	17.20	12.10	9.60	

¹⁾ All values are for reinforced concrete as base material of strength classes from C20/25 to C50/60

 $^{^{\}rm 2)}$ Data valid for steel failure. See approval for other failure modes

³⁾ Values are for standard effective anchorage depths values in cracked concrete. Check the fire test report for the complete list of values

⁴⁾ Values are for non-cracked concrete

Fire loads Mechanical Anchors

Anchor type	Size	Anchor type Size			·				
,,,,		depth (mm)	R30	R60	R90	R120	/ No.		
W-BS	Ø6	31	0.90	0.80	0.60	0.40			
		44	0.90	0.80	0.60	0.40			
		35	2.40	1.70	1.10	0.70			
	Ø8	43	2.40	1.70	1.10	0.70			
		52	2.40	1.70	1.10	0.70			
		43	4.40	3.30	2.30	1.70			
	Ø10	60	4.40	3.30	2.30	1.70	ETA-		
		68	4.40	3.30	2.30	1.70	16/0043		
		50	7.30	5.80	4.20	3.40			
	Ø12	67	7.30	5.80	4.20	3.40			
		80	7.30	5.80	4.20	3.40			
		58	10.30	8.20	5.90	4.80			
	Ø14	Ø14	79	10.30	8.20	5.90	4.80		
		92	10.30	8.20	5.90	4.80			
W-FAZ/S	M8	46	1.50	1.10	0.80	0.70			
	M10	60	2.60	1.90	1.40	1.20			
	M12	70	4.10	3.00	2.40	2.20			
	M16	85	7.70	5.60	4.40	4.00	ETA- 99/0011		
	M20	100	9.40	8.20	6.90	6.30	7770011		
	M24	115	13.60	11.80	10.00	9.10			
	M27	125	17.60	15.30	13.00	11.80			
W-FAZ/A4	M8	46	3.80	2.90	2.00	1.60			
	M10	60	6.90	5.30	3.60	2.80	ETA-		
-	M12	70	12.70	9.40	6.10	4.50	99/0011 of		
	M16	85	23.70	17.60	11.50	8.40	2 October		
	M20	100	33.50	25.00	16.40	12.10	2018		
	M24	125	48.20	35.90	23.60	17.40			

Androbon	Size	Effective ancho-	Max tensile loading (kN) for specified fire resistance time 1) 2)				Authority
Anchor type	3126	rage depth (mm)	R30	R60	R90	R120	/ No.
W-HAZ/S	10/M6		1.00	0.80	0.60	0.40	
	12/M8		1.90	1.50	1.00	0.80	
,	15/M10		4.30	3.20	2.10	1.50	
	18/M12		6.30	4.60	3.00	2.00	ETA-02-
	24/M16		11.60	8.60	5.00	3.10	0031
	24/M16L		11.60	8.60	5.00	3.10	
	28/M20		18.30	13.50	7.70	4.90	
	32/M24		26.30	19.50	12.60	9.20	
W-HAZ/A4	12/M8		6.10	4.40	2.60	1.80	
	15/M10		10.20	7.30	4.30	2.80	ETA-02-
	18/M12		15.70	11.10	6.40	4.10	0031
	24/M16		29.20	20.60	12.00	7.70	
W-FA/S	M6/40		0.90	0.50	0.30	0.25	IBMB Braun- schweig 7260/ 2018
	M8		1.40	0.80	0.50	0.40	
	M10		2.20	1.20	0.80	0.60	
	M12		3.20	1.80	1.20	0.90	
	M16		6.00	3.40	2.20	1.70	
	M20		10.00	5.25	3.60	2.75	
W-FA/A4	M6/40		0.90	0.50	0.30	0.25	IBMB Braun-
W-FA/HCR	M8		2.30	1.70	1.40	1.30	
	M10		3.60	2.60	2.20	2.00	
•	M12		5.20	3.80	3.20	2.90	schweig
	M16		9.70	7.00	6.00	5.40	3067/ 2013
	M20		15.00	10.20	8.20	7.00	
W-ED/S	M6		1.70	0.70	0.40	0.30	
	M8x30		1.70	0.70	0.40	0.30	10110
	M8x40		3.00	1.50	0.80	0.60	IBMB Braun-
	M10		4.70	2.40	1.30	1.00	schweig
	M12		6.90	2.40	1.30	1.00	3067/
	M16		12.50	5.60	3.50	2.50	2013
	M20		18.00	8.50	5.50	4.40	
W-ED/A4	M6		1.70	0.70	0.40	0.30	
	M8x30		1.70	0.70	0.40	0.30	IDAAD
	M8x40		3.00	1.50	0.80	0.60	IBMB Braun-
	M10		4.70	2.40	1.30	1.00	schweig
	M12		6.90	2.40	1.30	1.00	3067/
	M16		12.50	5.60	3.50	2.50	2013
	M20		18.00	8.50	5.50	4.40	

 $^{^{1)}}$ All values are for reinforced concrete as base material of strength classes from C20/25 to C50/60 $^{2)}$ Data valid for steel failure. See approval for other failure modes

BUILDING SITE TESTS

3. Construction site tests

3.1. Test recommendations

These recommendations are valid for anchors with a European Technical Assessment (ETA). The job site tests are not considered to be a substitution of the Eurocode EN 1992-4 procedure for assessing the suitability of fixings in a particular base material. Tests in shear are not usually needed as shear performance is generally limited by the material strength of either the structure or the anchor. They may be needed when fixing to low strength masonry.

Tests for anchors on site may be required for two distinct purposes:

- 1.) To determine the suitability of a fixing and the Recommended Design Resistance of an anchor in the case where no manufacturer's data is available for the specific base material concerned, i.e. where the base material of the application is within the category of the ETA, but does not comply in terms of strength and/or dimensions.
- 2.) To validate the quality of installation of anchors used on the job, i.e. proof tests.

3.2. Pull-out tests for determining recommended design resistance

3.2.1. Number of tests

The characteristic resistance to be applied to an anchor should be determined by means of at least **15 pull-out tests** carried out on the construction work with a centric tension load acting on the anchor. Execution and evaluation of the tests as well as issue of the test report and determination of the characteristic resistance should be supervised by the person responsible for execution of works on site and be carried out by a competent person. Number and position of the anchors to be tested should be adapted to the relevant special conditions of the construction work in question and, for example, in the case of blind and larger areas be increased such that a reliable information about the characteristic resistance

of the anchor embedded in the base material in question can be derived. The tests should take account of the unfavorable conditions of practical execution.

3.2.2. Installation of anchor

The anchor to be tested should be installed (e.g. preparation of drill hole, drilling tool to be used, drill bit, type of drilling hammer or rotation, thickness of fixture) and as far as spacing and edge distances are concerned be distributed in the same way as foreseen for the intended use.

Depending on the drilling tool, hard metal hammer-drill bits or hard metal percussion drill bits, respectively, according to ISO 5468 should be used. New drill bits should be used for one test series.

The cleaning process of the drill hole should follow the manufacturer's installation instruction using the corresponding tools.

3.2.3. Execution of test

The test rig used for the pull-out tests should allow a continuous slow increase of load recorded by a calibrated measuring equipment. The load should act perpendicular to the surface of the base material and be transmitted to the anchor via a hinge.

The reaction forces should be transmitted to the base material such that possible breakout of the concrete / masonry is not restricted. This condition is considered as fulfilled, if the support reaction forces are transmitted

- a) Concrete: at a distance of at least 1.5 \times h_{ef} from the anchors.
- Masonry: either in adjacent masonry units or at a distance of at least 150 mm from the anchors.

The load should be progressively increased so that the load is achieved after not less than about 1 minute. Recording of load is carried out when the ultimate load is achieved.

3.2.4. Evaluation of results of pull-out tests

The characteristic resistance N_{Rk1} is obtained from the measured values of N1 as follows:

$$N_{Rk} = \alpha \cdot N_1 \leq N_{Rk} = TA$$

The characteristic resistance N_{Rk1} has to be equal or smaller than the characteristic resistance N_{Rk} which is given in the ETA for similar masonry (bricks or blocks).

- N₁ = the mean value of the five smallest measured values at the ultimate load.
- $N_{Rk,ETA}$ = characteristic resistance N_{Rk} given in the ETA for the same category of masonry.
- a = 0.5 for plastic and bonded anchor acc. to TR 053.
- a = 0.75 for mechanical and chemical anchor for use in concrete.

If in case of bonded anchors and mechanical anchors the number of pull-out tests is smaller than 15, the characteristic values are to be determined as a 5% fractile:

a) Mechanical and Bonded anchor for use in concrete:

$$N_{Rk1} = N_{Ru,m}(1-k\cdot v)\cdot f_{b,N} \leq N_{Rk,ETA}^{C20/25}$$

 $\boldsymbol{f}_{\text{b,N}}$ is a factor for comparing the results with the same compressive concrete strength.

$$f_{b,N} = \sqrt{\frac{25}{f_{ck,cube}}} = \sqrt{\frac{20}{f_{ck,cyl}}}$$

b) Bonded anchor for use in masonry:

$$N_{Rk1} = N_{Ru.m} (1 - k \cdot v) \cdot \beta \le N_{Rk.ETA}$$

 $N_{p_{i,m}}$ = mean value of the ultimate load of the n tests.

v = coefficient of variation of the ultimate load.

β = is an influencing factor whose values are given in the approval document.

k = factor

Table 1: k factor for calculating 5% fractile

•											
Number of tests n	5	6	7	8	9	10	11	12	13	14	15
k-factor for calclulating 5%-fractile	3.400	3.092	2.894	2.754	2.650	2.568	2.503	2.448	2.402	2.363	2.329

Note: coefficient of variation s unknown, one-sided confidence level p = 0.9

3.2.5. Determination of recommended design resistance

The Recommended Design Resistance: $N_{Rd} = \frac{N_{Rk1}}{\gamma_M}$

$$\gamma_{M}$$
 = material safety factor

The partial safety factors for the resistance of anchors with approval may be taken

- a) Plastic and bonded anchors for use in masonry: $\gamma_{\rm M} = 2.5$
- b) Anchors for use in concrete: $\gamma_{\rm M} = \gamma_{\rm M,ETA} \, \{ 1.25 \times \gamma_{\rm M,ETA} \, {\rm in \ case \ concrete} \\ {\rm compressive \ strength \ is \ unknown} \}$

In absence of national regulations the partial safety factors for the resistance of anchors without any approval may be taken

a) all base material
$$\gamma_{\rm M} = 5$$

3.3. Preliminary or proof tests for validating the quality of installation of anchors

3.3.1. Number of tests

The minimum number of fixings to be proof tested is 15. The minimum of 15 applies in any discrete area where different anchors may have been used, the base material is different, the condition of the base material has been affected by weather conditions e.g. on a different elevation or where anchors have been installed by different installation teams.

The tests are carried out on the construction work with a centric tension load acting on the anchor. Execution and evaluation of the tests as well as issue of the test report should be supervised by the person responsible for execution of works on site and be carried out by a competent person.

BUILDING SITE TESTS

3.3.2. Installation of anchor

The anchor to be tested should be installed (e.g. preparation of drill hole, drilling tool to be used, drill bit, type of drilling hammer or rotation, thickness of fixture) and as far as spacing and edge distances are concerned be distributed in the same way as foreseen for the intended use. Depending on the drilling tool, hard metal hammer-drill bits or hard metal percussion drill bits, respectively, according to ISO 5468 should be used. New drill bits should be used for one test series.

The cleaning process of the drill hole should follow the manufacturer's installation instruction using the corresponding tools.

3.3.3. Execution of test

The test rig used for the pull-out tests should allow a continuous slow increase of load recorded by a calibrated measuring equipment. The load should act perpendicular to the surface of the base material and be transmitted to the anchor via a hinge.

The reaction forces should be transmitted to the base material such that possible breakout of the concrete / masonry is not restricted. This condition is considered as fulfilled, if the support reaction forces are transmitted

- a) Concrete: at a distance of at least 1.5 x $\rm h_{\rm ef}$ from the anchors.
- b) Masonry: either in adjacent masonry units or at a distance of at least 150 mm from the anchors.

The load should be progressively increased so that the load is achieved after not less than about 1 minute.

Recording of load is carried out when the ultimate load is achieved.

3.3.4. Calculation of proof load

a) Bonded anchors for use in masonry:

$$N_p = 0.8 \cdot N_{Ed} \cdot \gamma_{Mp}$$

with
$$\gamma_{Mp} = \gamma_M \cdot \frac{1}{\beta}$$

 N_p = load Np for the proof load tests

 N_{Ed} = design value of action $(N_{Ek} \cdot 8_E)$

8_M = partial safety factors for the resistance (= 2.5 for masonry units)

β = is an influencing factor whose values are given in the approval document

b) Anchors for use in concrete:

$$N_{n} = 0.8 \cdot N_{sd} \cdot \gamma_{M.n}$$

 γ_{Mp} = material safety factor in case of pull-out failure

3.3.5. Acceptance criteria

Anchors can be said to have satisfied a proof test if the required load is held without movement or any damage or deformation occurring to either the fixing or the base material. Any anchor suffering movement or damage should be recorded as a failure. If, in any discreet area, 1 failure is encountered, the reason for failure should be investigated, the number of anchors tested in that area should be doubled to 5% and at least 6. If more than one fails, then 100% of the anchors should be tested, the reasons for failure determined and the specification reconsidered.

3.3.6. Determination of recommended design resistance

If the quality of installation is proven and the specification not reconsidered, the design resistances are calculated with the data given in the relevant approval.

In case of bonded anchors for use in masonry, where the base material of the application is within the category of the ETA but does not comply in terms of strength and/or dimensions, the Recommended Design Resistance is evaluated as follows:

The Recommended Design Resistance: $N_{Rd} = \frac{N_{Rk2}}{\gamma_M}$ with the characteristic resistance

a) Bonded anchors for use in masonry:

$$N_{Rk2} = \frac{1}{0.8} \cdot N_p \cdot \beta \le N_{Rk,ETA}$$

$$\gamma_{M} = 2.5.$$

b) Anchors for use in concrete:

$$N_{Rk2} = \frac{1}{0.8} \cdot N_p \le N_{Rk,ETA}$$

 $\gamma_{_{M}}$ = $\gamma_{_{Mp}}$ acc. to respective ETA $\gamma_{_{M}}$ = 1.25 $\gamma_{_{Mp}}$ acc. to respective ETA.

4. Post-installed Reinforcement

4.1. General

The following chapter explains the design theory behind post-installed reinforcement bar (rebar) applications and is intended to provide the reader with a basic understan-

ding on the design requirements related to the Eurocode EN 1992-1-1 and the European Assessment Document (EAD) 330087-00-0601.

Table 1 provides an overview of the specifications of our WIT-Rebar systems:

Table 1: Specification overview of WIT-Rebar systems

	WIT-PE 1000	WIT-UH 300	WIT-PE 510	WIT-VM 250
	The state of the s	and a line of the		anna tanana tana
European Technical Assessment	ETA-19/0543	ETA-17/0036	ETA-20/1037	ETA-12/0166
Material	Two-component re- active resin mortar, pure epoxy	Urethane vinyl ester hybrid mortar	Two-component reactive resin mortar, pure epoxy	Two-component reaction resin mor- tar, vinyl ester
REBAR diameter	8 - 40 mm	8 - 32 mm	8 - 40 mm	8 - 32 mm
Drill hole cleaning with hollow drill-bit system	~	~	~	Х
Gelling- / working time at 20°C	30 min	3 min	30 min	6 min
Minimum curing time in dry concrete at 20°C	12 h	30 min	12 h	45 min
Minimum curing time in wet concrete at 20°C	24 h	60 min	24 h	90 min
$\begin{array}{l} \text{Maximum embedment} \\ \text{depth } I_{_{v,max}} \end{array}$	2000 mm	2000 mm	2000 mm	2000 mm
Temperature of base material in-service	-40°C - +80°C	-40°C - +80°C	-40°C - +80°C	-40°C - +80°C
Temperature of base material at installation	+5°C - +40°C	-5°C - +40°C	+5°C - +40°C	-10°C - +40°C
Fire resistance / Seismic / 100 years	V/V/V	V/V/V	✓ / X /X	✓ / X / X
Software / Eurocode	V / V	V / V	V / V	V / V

4.2. Anchor Theory vs. Rebar Theory

Table 2 shows a comparison of potential failure modes for rebar used as anchor and post-installed rebar connection.

Table 2: Comparison of potential failure modes

Rebar used as A	nchor (EN 1992-4)	Post-installed Rebar Co	onnection (EN 1992-1-1)
Failure modes in Tension	Failure modes in Shear	Failure modes in Tension	Failure modes in Shear
Steel failure of fastener	Steel failure of fastener without lever arm	Steel failure of reinforcing bar	
	Steel failure of fastener with lever arm	Bond failure	
Pull-out failure of fastener	Concrete pry-out failure	Splitting failure	
Combined pull-out and concrete failure	Concrete edge failure		
Concrete cone failure			
Splitting failure			

4.2.1. Rebar used as Anchor

Situations where the concrete needs to take up tension loads from the anchorage or where reinforcing bars are designed to carry shear loads should be considered as "rebar used as anchors" and designed according to anchor design method such as given e.g. in the guidelines of EN 1992-4 or simplified in this Design Manual. Those guidelines verify all possible failure loads in tension and shear.

4.2.2. Post-installed Rebar Connection

The design of the rebar anchorage is performed according to structural concrete design codes, e.g.

EN 1992-1-1. With a given test regime and the assessment criteria EAD 330087, it is proven that the load transfer for post-installed reinforcing bars is similar to cast in bars if the stiffness of the overall load transfer mechanism is similar to the cast-in system. The efficiency depends on the strength of the adhesive mortar against the concentrated load close to the ribs and on the capacity of load transfer at the interface of the drilled hole.

In many cases the bond values of post-installed bars are higher compared to cast in bars due to better performance of the adhesive mortar. But for small edge distance and/or narrow spacing, splitting or spalling forces become decisive due to the low tensile capacity of the concrete.

4.3. Post-installed rebar anchorage - The assessment criteria of EOTA-EAD 330087

The guideline specifies a number of tests in order to qualify products for post-installed rebar applications. These are the performance areas checked by the tests:

- 1. Bond strength in different strengths of concrete
- 2. Substandard hole cleaning in dry and wet concrete
- 3. Influence of temperature
- 4. Correct injection
- 5. Installation direction
- 6. Influence of sustained loads
- 7. Freeze-thaw conditions
- 8. High alkalinity and sulphurous atmosphere
- 9. Corrosion resistance
- 10. Resistance to fire

If an adhesive meets all assessment criteria, rebar connections carried out with this adhesive can be designed with the bond strength and minimum anchorage length according to EN 1992-1-1 as given in the tables below for different Würth injection mortars.

Adhesives (or in conjunction with a certain drilling procedure) which do not fully comply with all assessment criteria can still obtain an approval:

- If the bond strength obtained in tests does not fulfil
 the specified requirements, then bond strengths
 lower than those given by EN 1992-1-1 shall be
 applied. These values are given in the respective
 approval.
- If it cannot be shown that the bond strength of reinforcing bars post-installed with a selected product and cast-in reinforcing bars in cracked concrete (w = 0.3 mm) is similar, then the minimum anchorage length l_{b,min} and the minimum overlap length l_{0,min} shall be increased by a factor 1.5.

4.4. Rebar Applications

Products tested according to above guideline can be used for applications in non-carbonated concrete C12/15 to C50/60 (EN 206) only, which are also allowed with straight deformed cast-in bars according to (EN 1992), e.g. those in the following applications:

Note to the following figures: In the figures below, no transverse reinforcement is plotted, the transverse reinforcement as required by EN 1992 shall be present. The shear transfer between old and new concrete shall be designed according to EN 1992.

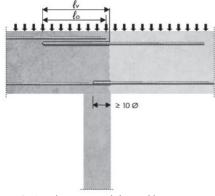


Figure 1: Overlap joint in slabs and beams

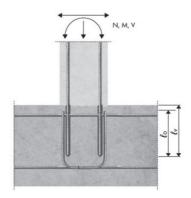


Figure 2: Overlap joint in a foundation of a column or wall where the rebars are stressed in tension

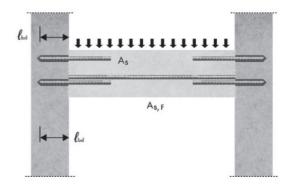


Figure 3: End anchoring of slabs or beams, designed as simply supported

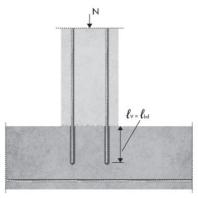


Figure 4: Rebar connection of components stressed primarily in compression. The rebars are stressed in compression

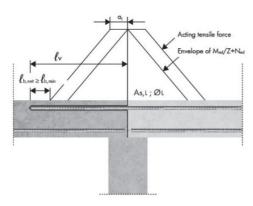


Figure 5: Anchoring of reinforcement to cover the line of acting tensile force

4.5. Design of Anchorage of longitudinal reinforcement with EN 1992-1-1

a) Reinforcing bars shall be so anchored that the bond forces are safely transmitted to the concrete avoiding longitudinal cracking or spalling. Transverse reinforcement shall be provided if necessary. b) The ultimate bond strength shall be sufficient to prevent bond failure.

4.5.1. The design value of the ultimate bond stress

$$f_{bd} = 2.25 \cdot \eta_1 \cdot \eta_2 \cdot \frac{f_{ctk,o.o5}}{1.5}$$

where:

- f_{ck, 0.05} ... is the 5% fractile charactersitic tensile strength of concrete according to Table 3
- η₁ ... is a coefficient related to the quality of the bond condition and the position of the bar during concreting (details see EN 1992-1-1):
 - o $\eta_1 = 1.0$ when good conditions are obtained and
 - o η_1 = 0.7 for all other cases and for bars in structural elements built with slip-forms, unless it can be shown that good bond conditions exist
- η₂ ... is related to the bar diameter:
 - o $\eta_2 = 1.0$ for $\emptyset \le 32$ mm
 - o $\eta_2 = (132 \emptyset)/100$ for $\emptyset > 32$ mm

Table 3: Strength characteristics for concrete

Compressive s	trength class	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
f _{ck,cube}	[N/mm ²]	15	20	25	30	37	45	50	55	60
f _{cm}	[N/mm ²]	20	24	28	33	38	43	48	53	58
f _{ctm}	[N/mm ²]	1.60	1.90	2.20	2.60	2.90	3.20	3.50	3.80	4.10
f _{ctk, 0.05}	[N/mm ²]	1.10	1.30	1.50	1.80	2.00	2.20	2.50	2.70	2.90
f _{ctk, 0.95}	[N/mm ²]	2.00	2.50	2.90	3.30	3.80	4.20	4.60	4.90	5.30
$f_{bd} \varnothing \leq 32$	[N/mm ²]	1.65	1.95	2.25	2.70	3.00	3.30	3.75	4.05	4.35
f _{bd} Ø ≤ 34	[N/mm ²]	1.62	1.91	2.21	2.65	2.94	3.23	3.68	3.97	4.26
f _{bd} Ø ≤ 36	[N/mm²]	1.58	1.87	2.16	2.59	2.88	3.17	3.60	3.89	4.18
f _{bd} Ø ≤ 40	[N/mm²]	1.52	1.79	2.07	2.48	2.76	3.04	3.45	3.73	4.00

4.5.2. Development length

Development length is the shortest length needed for a reinforcing bar so that the yield strength can be induced in the bar.

$$N_{Rd,b} = N_{Rd,s}$$

$$f_{bd} \cdot l_{b,develop} \cdot \emptyset \cdot \pi = \frac{f_{yk}}{\gamma_s} \cdot \frac{\pi \cdot \emptyset^2}{4}$$

$$l_{b,develop} = \frac{\emptyset}{4} \cdot \frac{f_{yk}/\gamma_s}{f_{bd}}$$

Reinforced concrete members are often designed using strut and tie models. The forces are represented by trusses and the nodes of these trusses have to connect the forces in such a way that they are in balance: The sum of the concrete compression force, the support force and the steel tensile force equals zero. The node can maintain its function only when the bond between the reinforcing bar and the surrounding concrete is activated and in balance with the horizontal component of the concrete compression strength. The node has to physically provide a certain length over which the rebar can develop stress on its left side. This extension on the left side is called "development length" or "anchorage length". The length or the space on the left side depends on the method of anchorage: bend, hook or straight.

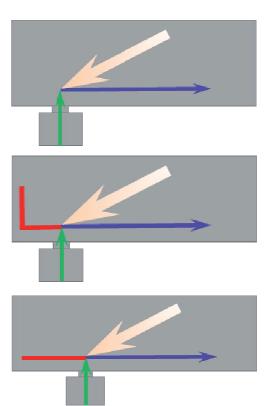


Figure 6: Node of trusses

900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 520 546 Design load for good bond condition, C20/25 208 234 188 212 195 220 z Z α Table 4: Design loads for good bond conditions Anchorage length [mm] 386 116 580 174 676 203 773 232 966 290 2.25 1208 362 2.25 1353 406 2.25 1546 464 2.21 1676 503 2.16 1812 543 2.07 2100 630 Minimum anchorage length m m Development length 2.25 2.25 2.25 2.25 2.25 [N/mm²] 2.25 21.9 49.2 6.99 87.4 34.1 500 1.15 213.4 1.15 442.6 500 1.15 136.6 500 1.15 267.7 1.15 349.7 500 1.15 394.7 1.15 546.4 Z Design resistance of rein-1.15 500 1.15 500 1.15 Partial factor for reinforcing $[N/mm^2]$ Characteristic yield strength 153.9 314.2 490.9 615.8 804.2 907.9 1017.9 78.5 113.1 201.1 1256.6 [mm²] 50.3 reinforcement Pross sectional area of mm_ 20 25 25 28 33 34 36 Bar size Ø

4.5.3. Basic anchorage length

The calculation of the required anchorage length shall take into consideration the type of steel and bond properties of the bars. The basic required anchorage length $I_{b,rqd}$ for anchoring the force A_s , σ_{sd} in a bar assuming constant bond stress equal to $f_{b,r}$ follows from:

$$l_{b,rqd} = \frac{\emptyset}{4} \cdot \frac{\sigma_{Sd}}{f_{bd}}$$

4.5.4. Design anchorage length

According to EN 1992-1-1, the design anchorage length, $\rm I_{hd}$ is

$$l_{bd} = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \alpha_5 \cdot l_{b,rqd} \ge l_{b,min}$$

The factors \mathbf{a}_1 to \mathbf{a}_5 subscripts take into account the form of the bars, concrete cover, confinement by transverse reinforcement, the influence of welded transverse bars along the design anchorage length and the effect of the pressure transverse to the plane of splitting along the design anchorage length.

In case of a post-installed rebar application, only straight bars are possible.

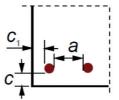


Fig. 1: Values for straight bars in beams and slabs (EN 1992-1-1) Note: $c_A = min (\alpha/2, c_B, c)$

- $a_1 = 1.0$ for anchorage of straight bars
- a_2 : 0.7 \leq 1 0.15 (c_d \emptyset)/ \emptyset \leq 1.0 for reinforcement bar in tension or a_2 = 1.0 for reinforcement bar in compression
- $a_2 = 1.0$ no transverse reinforcement
- $a_4 = 1.0$ no welded transverse reinforcement
- a_5 : 0.7 \leq 1 0.04 ρ \leq 1.0 for confinement by transverse pressure ρ [MPa] at ultimate limit state along I_{bd}
- ightharpoonup The product of $(a_2a_3a_5)$ should be ≥ 0.7 . $I_{b,min}$ is the minimum anchorage length if no other limitation is applied:
 - l_{b,min}≥max (0.3 · l_{b,rqd}; 10Ø;100 mm) for anchorages in tension
 - $l_{b,min} \ge max (0.6 \cdot l_{b,rqd}; 100;100 mm)$ for anchorages in compression

The minimum anchorage length shall be multiplied by the amplification factor \mathbf{a}_{lb} according Table 5 below:

Table 5: Amplification factor a_{lb} related to drilling method for concrete class C12/15 to C50/60

Injection mortar	Drilling method	Bar size	Amplification factor a _{lb}
WIT-PE 1000	All drilling methods	8 mm to 40 mm	1.0
WIT-UH 300	Hammer drilling (HD) Hollowing drill bit system (HDB) Compressed air drilling (CD)	8 mm to 32 mm	1.0
WIT-PE 510	Hammer drilling (HD) Hollowing drill bit system (HDB) Compressed air drilling (CD)	8 mm to 40 mm	1.0
	Diamond coring (DD)	8 mm to 40 mm	1.5
WIT-VM 250	Hammer drilling (HD) Hollowing drill bit system (HDB) Compressed air drilling (CD)	8 mm to 32 mm	1.0

4.5.5. Lap or splice length

According to EN 1992-1-1, the design lap length is $l_0 = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_5 \cdot \alpha_6 \cdot l_{b,rod} \geq l_{0,min}$

- $a_1 = 1.0$ for anchorage of straight bars
- $a_2 = 1.0$ for reinforcement bar in compression
- a_2 : $0.7 \le 1 0.15 (c_d \emptyset)/\emptyset \le 1.0$ for reinforcement bar in tension

- $a_3 = 1.0$ no transverse reinforcement
- a₅: 0.7 ≤ 1 0.04ρ ≤ 1.0 for confinement by transverse pressure ρ [MPa] along l_{L,1}
- a₆: 1.0 ≤ a₆ ≤ 1.5 for influence of percentage of lapped bars relative to the total cross-section area according to the following table:

Table 6: Values of the coefficient

Percentage of lapped bars relative to the total cross-section area	< 25%	33%	50%	>50%
۵۶	1.00	1.15	1.40	1.50

Note: Intermediate values may be determined by interpolation

The product of $(a_2a_3a_5)$ should be ≥ 0.7 .

 $I_{0 \text{ min}}$ is the minimum lap length:

$$l_{0,min} \ge max (0.3 \cdot \alpha_6 \cdot l_{b,rad}; 15\emptyset; 200 mm)$$

The minimum lap length shall be multiplied by the amplification factor a_{lh} according Table 5.

4.5.6. Concrete cover

Concrete cover is defined as the minimum distance between the outer surface of the concrete element and the surface of the embedded reinforcement. The nominal concrete cover is defined as a minimum cover plus a deviation allowance Δc_{dev} . The recommended value for $\Delta c_{dev} = 10$ mm.

$$c_{nom} = c_{min} + \Delta c_{dev}$$

The minimum concrete cover c_{\min} is to ensure safe transmission of bond forces and protection against steel and fire is defined according to the following equation:

$$c_{min} = max (c_{min,b}; c_{min,dur}; 10 mm)$$

where

- c_{min b} = minimum cover due to bond requirement
- c_{min,dur} = minimum cover due to environmental conditions
- a) $c_{\mbox{\tiny min,b}}$ is equivalent to the diameter of the reinforcing bar
- b) $c_{min.dur}$ can be obtained from Table 8:

Table 8: Values of minimum cover $c_{\scriptscriptstyle min,dur}$ requirements with regard to durability for reinforcement steel

					Exposur	e Class		
		XO	XC1	XC2/XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3
	S1	10	10	10	15	20	25	30
S	S2	10	10	15	20	25	30	35
Class	S3	10	10	20	25	30	35	40
	S4	10	15	25	30	35	40	45
Structural	S 5	15	20	30	35	40	45	50
Str	S6	20	25	35	40	45	50	55

According to the exposure class in a given situation, the table below from EN 1992-1-1 further provides the engineer with the indicative minimum concrete strength class for each exposure class:

Table 9: Indicative minimum strength class

Corrosion	1										
	Carbo	onation-in	duced cori	osion	Chl	oride-ind corrosio	corre	ride-induced rosion from ea-water			
	XC1	XC2	XC3	XC4	XD1	XD2	XD3	XS1	XS2	XS3	
Indicative minimum strength class	C20/25	C25/30	C30)/37	C30)/37	C35/45	C30/37	C35,	/45	
Damage	to Concret	re									
	No risk	Freez	e/Thaw A	ttack		(Chemical	Attack			
	ХО	XF1	XF2	XF3	XA1		XA2		XA	.3	
Indicative minimum strength class	C12/15	C30/37	C25/30	C30/37		C30	0/37		C35/45		

For our WIT-Rebar systems, the concrete cover shall be defined as

$$\min c = \max (c_{nom}; c_{min,inst})$$

The minimum cover of post-installed reinforcing bars $c_{\min,inst}$ depends on the drilling method:

Table 10: Minimum cover related to drilling method

Drilling method	Rebar diameter (Ø)	Without drilling aid	With drilling aid
Hammer drilling (HD) Hollow drill bit system (HDB)	< 25 mm	30 mm + 0.06 l _v ≥ 2Ø	30 mm + 0.02 l _v ≥ 2 Ø
Hollow drill bil system (HDB)	≥ 25 mm	40 mm + 0.06 l _v ≥ 2Ø	40 mm + 0.02 l _v ≥ 2 Ø
D:	< 25 mm	Dill in the Lillian of L	30 mm + 0.02 l _v ≥ 2 Ø
Diamond drilling (DD)	≥ 25 mm	Drill rig used as drilling aid	40 mm + 0.02 l _v ≥ 2 Ø
Community Lillian	< 25 mm	50 mm + 0.08 l _v	50 mm + 0.02 l _v
Compressed air drilling	≥ 25 mm	60 mm + 0.08 l _v	60 mm + 0.02 l _v

Comment: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

4.5.7. Spacing of bars and laps

The spacing of bars shall be such that the concrete can be placed and compacted satisfactorily for the development of adequate bond. The clear distance (horizontal and vertical) between individual parallel bars or horizontal layers of parallel bars should be not less than the $\max(\emptyset; (d_g + 5 \text{ mm}) \text{ or } 20 \text{ mm})$ where d_g is the maximum size of aggregate (8.2; EN 1992-1-1:2011-01).

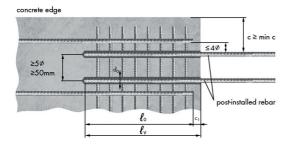


Figure 7: Adjacent laps

The spacing between post-installed reinforcing bars shall be greater max (5%; 50 mm).

4.5.8. Embedment depth

Embedment depth for overlap joints

For calculation of the effective embedment depth of overlap joints the concrete cover at end-face of bonded-in rebar c, shall be considered:

$$l_{v} \ge l_{0} + c_{1}$$

If the clear distance between the overlapping rebar is greater than 4 \varnothing the lap length shall be enlarged by the difference between the clear distance and 4 \varnothing .

4.5.9. Maximum embedment depth

Table 11: Maximum approved embedment depth for WIT-Rebar systems

Bar size	, ∅ [mm]	8	10	12	14	16	20	25	28	32	34	36	40
Mortar	Drilling Method *	Maximum permissible embedment depth, I max [mm											
WIT-PE 1000	HD/CD/DD	800	1000	1200	1400	1600	2000	2000	2000	2000	2000	2000	2000
VVII-PE 1000	HDB	800	1000	1000	1000	1000	1000	1000	1000	1000	-	-	-
WIT-UH 300	All methods	1000	1000	1200	1400	1600	2000	2000	2000	2000	-	-	-
WIT-PE 510	HD/CD/DD	800	1000	1200	1400	1600	2000	2000	2000	2000	2000	2000	2000
,,,,,,,	HDB	800	1000	1000	1000	1000	1000	1000	1000	1000	-	-	-
WIT-VM 250	All methods	1000	1000	1200	1400	1600	2000	2000	1000	1000	-	-	-

^{*} HD = Hammer drilling, CD = Compressed air drilling, HDB = Hollow drill bit system, DD = Diamond drilling

4.5.10. Transverse reinforcement

The requirements of transverse reinforcement in the area of the post-installed rebar connection shall comply with EN 1992-1-1, Section 8.7.4.

4.5.11. Connection joint

The transfer of shear forces between new concrete and existing structure shall be designed according to EN 1992-1-1, Section 6.2.5 "Shear at the interface between concrete cast at different times". The joints for concreting must be roughened to at least such an extent that aggregate protrude. In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of (Ø + 60 mm) prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover for the respective environmental conditions in accordance with EN 1992-1-1. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

4.5.12. Failure modes and anchorage length

In most cases the reinforcement bars are placed close to the surface of the concrete member to achieve good crack distribution and economical bending capacity. For splices at wide spacing, the bearing capacity of the concrete depends only on the thickness of the concrete cover. At narrow spacing the bearing capacity depends on the spacing and on the thickness of the cover. In the design codes the reduction of bearing capacity of the cover is taken into account by means of multiplying factors for the splice length. Splitting failure is decisive if the radial cracks propagate through the entire cover. Bond failure is caused by pull-out of the bar if the confinement (concrete cover, transverse reinforcement) is sufficient to prevent splitting of the concrete cover. EN 1992-1-1 controls the failure modes by limiting the a_{γ} value to $a_2 \ge 0.7$. The spalling of the concrete cover or splitting between bars will be the controlling mode of failure. The value a, gives an explicit consideration for

splitting and spalling as a function of concrete cover and bar spacing.

If a_2 is less than 0.7, corresponding to cover dimensions of $c_d/\phi > 3$ or spacing of $a/\phi > 6$, the cover or spacing is large enough so that splitting cannot occur anymore and pull-out will control.

4.6. Fire load case

4.6.1. General information

The load-bearing capacity in case of fire corresponds to the performance characteristic R according to DIN EN 13501-2. A classification of performance characteristics in case of fire according to DIN EN 13501-2 requires a time-dependent fire stress according to the unit temperature time curve (ETK), which is defined in DIN EN 13631. The National Annex to DIN EN 1991-1-2 also requires the application of standard time/temperature curve at any point of the structure for structural elements in building construction. If a sufficient load-bearing capacity under ETK load has been verified, this verification applies irrespective of the later use.

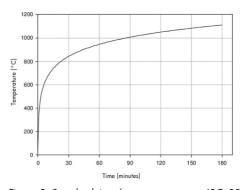


Figure 8: Standard time/temperature curve ISO 834

4.6.2. Application cases

To determine the load-bearing capacity of reinforcement connections in the event of fire, a basic distinction must be made between two applications. In application A, the thermally stressed surface shows the same direction as the reinforcement, which leads to a locally constant but timevarying temperature along the anchorage length $I_{\rm hd}$.

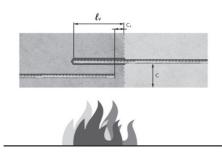


Figure 9: Fire load case - Application A

Alternatively for application B, the post-installed rebar is perpendicular to the thermally stressed surface, which results in a temporally and spatially variable temperature profile along the anchorage length l. J.

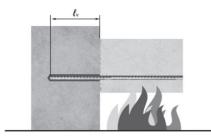


Figure 10: Fire load case - Application B

The distinction between application cases A and B is made exclusively according to the orientation of the flame-exposed surfaces in relation to the direction of the post-installed rebar and is not the same as the distinction between end anchoring and lap joint.

4.6.3. Load-bearing capacity

The load-bearing capacity of post-installed rebar connections in case of fire is significantly affected by the temperature-dependent bond stress $f_{\rm hdf}$ (Θ) with

$$f_{bd,fi}(\theta) = k_{fi} \cdot f_{bd,fi}(\theta) \cdot f_{bd,PIR} \cdot \frac{\gamma_c}{\gamma_{M,fi}}$$

which is determined by experimental techniques. The reduction factor $k_{_{\rm fi}}$ (Θ) under fire stress, the design value $f_{_{\rm bd}}$ of the bond stress in cold case according to DIN EN 1992-1-1, which depends on the concrete strength class, and the reduction factor $k_{_{\rm b}}$ with $f_{_{\rm bd,PIR}}$ = $k_{_{\rm b}}$. $f_{_{\rm bd}}$ are specified

in the relative ETA. According to DIN EN 1992-1-1, Table 2.1N in accordance with the corresponding national annex for the permanent and temporary design situation, the following applies to the partial safety factor of concrete in cold conditions

$$\gamma_{c} = 1.5$$

In case of fire, the following applies according to DIN EN 1992-1-2, chapter 2.3 in accordance with the corresponding national appendix for the partial safety factor of concrete

$$\gamma_{\rm M fi} = 1.0$$

The design values f_{bd} of the composite stress in cold case are shown in Table 3. The values are applicable for all drilling methods, but they depend on the reinforcement bar diameter and are valid for good bond conditions according to DIN EN 1992-1-1, chapter 8.4.2. In case of other bond conditions, the specified values have to be multiplied by a factor of 0.7.

For WIT-PE 1000, the factor k_b can be found in ETA19/0543 in Table C2.

$$k_{b} = 1.0$$

and thus for all cases

$$f_{bd} = f_{bd}$$

The temperature-dependent reduction factor $k_{b,\beta(\Theta)}$ is (depending on the ETA) to be considered. The graph below shows reduction factors $k_{b,\beta(\Theta)}$ for all WIT-Rebar systems

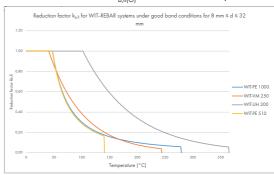


Figure 11: Reduction factor for WIT-Rebar systems (drilling methods HD/HBD/CD) for 8 mm \leq d \leq 32 mm

When designing post-installed rebar connections in case of fire, a distinction must be made between pull-out failure and steel failure, in addition to the distinction between application cases A and B.

4.6.4. Application case A

If the rebar connection in application A is in the same direction as the flamed surface, the function of the unit time-temperature curve results in a temperature along the rebar connection that varies over time but is locally constant. The time-dependent reinforcement temperature in case of fire is only dependent on the geometry of the existing component and the design in case of fire can be carried out using the time-dependent reinforcement temperature $\Theta(t)$ and the time-dependent bond stress $f_{\rm bell}$ $(\Theta(t))$.

4.6.4.1. Pull-out

If the stresses acting on a rebar connection are greater than the bond force that can be absorbed, failure occurs due to pull-out. The proof for the failure mode pull-out is performed in application A by determining the anchorage length $I_{b,rqd,fi}$ (t) required in case of fire. The value $I_{b,rqd,fi}$ (t) describes the basic value of the anchorage length in case of fire and is to be determined according to DIN EN 1992-1-1, equation (8.3) under consideration of the time- and temperature-dependent bond stress.

$$l_{b,rqd,fi}(t) = \frac{\emptyset}{4} \cdot \frac{\sigma_{sd,fi}}{f_{bd,fi}\left(\theta_{(t)}\right)}$$

with

- \emptyset = diameter of the reinforcement bar
- σ_{sd,fi} = existing steel stress of the bar at the beginning of the anchorage length in the ultimate limit state under extraordinary design situation according to DIN EN 1990

The design value l_{bd,fi} (t) of the anchorage length in case of fire is obtained analogously to the check under normal temperature according to DIN EN 19921-1, chapter 8.4.4.

4.6.4.2 Steel failure

The temperature-dependent load capacity of the rebar itself is limited by the load capacity of the steel cross-section. According to DIN EN 1992-1-2, Chapter 5.2(4),

the reinforcement of statically determinate reinforced concrete structures may be verified in case of fire by means of a temperature criterion. The critical temperature is $\Theta_{\rm crit} = 500\,^{\circ}$ C. The proof for steel failure is therefore provided if the following applies to the most unfavorable (i.e. warmest) point of the rebar in the post-installed rebar connection.

$$\theta(t) \leq \theta_{crit} = 500^{\circ}C$$

Alternatively, the verification of the reinforcing bar for steel failure in case of fire can be done by comparing the acting and the bond (tensile) force.

$$N_{fi,\theta(t),Rd} \geq N_{fi,Ed}$$

with N_{fi,Ed}: Stress on the bar at the beginning of the anchorage length in the ultimate limit state in case of an extraordinary design situation according to DIN EN 1990. The force that can be sustained in case of fire must be determined taking into account the temperature-dependent decrease of the yield strength according to DIN EN 1992-1-2. Table 3.2a.

$$f_{sy,\theta(t)} = k_{y\,\theta(t)} . f_{yk}$$

You get the bond tensile force in case of fire as:

$$N_{fi,\theta(t),Rd} = k_{y\theta(t)} \cdot f_{yk} \cdot \frac{\pi \cdot \theta^2}{4} \cdot \frac{1}{\gamma_{M,fi}}$$

In case of fire, the following applies in accordance with DIN EN 1992-1-2, Chapter 2.3 in accordance with the corresponding National Annex for the partial safety factor of reinforcing steel

$$\gamma_{\rm M fi} = 1.0$$

Table 12: Temperature for different fire durations vs.

Table 13: Bond strength for different fire durations

	١ '
	00 - 222 - 1-1-1-1
	1
	:
	1
	-
	يـ ا
	1
	-
	1
	1
_	
ē	\(\cdot \)
8	F
Ö	
ē	
5	
concrete cover	
_	_

		240	853	740	644	564	495	435	384	339	299	264	233	205	180	159	140	125	112	102	63	85	79	72	29	63
30		180	783	299	571	491	424	367	318	275	238	205	177	153	132	116	103	92	83	75	29	19	55	51	47	43
1	ion [min	120	684	566	471	394	330	277	232	193	161	135	115	66	87	76	29	29	52	46	42	38	34	31	29	27
T [° C] with member thickness	Fire duration [min	06	614	496	403	328	268	218	177	143	118	100	85	73	63	55	48	42	37	33	30	28	26	25	23	23
with men		09	516	399	311	241	187	144	114	93	77	64	54	46	39	34	30	27	25	24	23	22	21	21	21	20
	<u>-</u>	30	348	242	167	117	88	89	53	42	34	29	26	24	22	21	21	20	20	20	20	20	20	20	20	20
	U	_ _ _ _	2	ო	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

120 1.26 1.80 3.00 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 0.28 0.50 0.83 2.40 2.19 2.89 3.45 0.29 0.56 96.0 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 1.52 90 WIT-UH 300 3.45 3.45 0.74 2.17 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 0.35 1.36 3.03 3.45 3.45 3.45 3.45 3.45 3.45 9 [N/mm2] for member thickness = 30 cm 3.45 3.45 3.45 0.23 0.74 1.69 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 2.91 30 Good bond conditions, C20/25 Fire duration [min] 240 1.74 1.96 2.19 0.22 0.33 0.40 0.50 0.73 0.87 1.17 1.34 1.53 0.27 0.61 0. mm ≤ d ≤ 32 mm 80 0.26 0.33 0.42 0.53 99.0 0.82 0.99 1.18 1.40 1.66 1.95 3.45 3.45 2.29 2.66 3.07 0.21 120 0.36 0.48 0.64 0.84 1.05 1.30 1.61 1.98 2.43 2.95 3.45 3.45 3.45 3.45 3.45 3.45 3.45 0.20 0.27 WIT-PE 1000 0.80 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 0.30 0.58 2.73 3.40 3.45 0.22 0.42 1.04 1.34 2.17 8 1.7 ı 0.38 0.58 0.84 1.16 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 0.25 1.57 2.11 2.80 9 3.45 3.45 3.45 3.45 3.45 0.25 0.46 0.80 1.26 1.93 2.89 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 30 c [cm] 9 12 2 7 15 9 1 8 9 20 23 25 Ξ 22 2 0 α က 4 2 9 \land ∞

4.6.5. Application case B

If the rebar connection in application B is perpendicular to the direction of the flamed surface, the temperature along the rebar connection changes over time and place - the temperature decreases with increasing distance from the flamed surface.

4.6.5.1. Pull out

A design in case of fire for the failure type pull-out in the form of the determination of a single time-dependent composite stress $f_{bd,fi}$ ($\Theta(t)$) is not sufficient for application B because this stress is variable along the reinforcement connection. A procedure analogous to application A would therefore result in an additional required anchoring length $I_{b,red,fi}$ (t) at each point of the rebar.

On the safe side, it is of course conceivable and permissible to determine the required anchorage length $I_{b,rqd,fi}$ (t) analogous to application A, taking into account the most unfavorable (i.e. highest) temperature of the rebar in the existing component. However, the results obtained in this way can be considered as extremely conservative with increasing anchorage length.

A more economical approach, which makes use of the actual load-bearing capacity of the bonded joint, is to prove pull-out failure in application B by comparing the acting and the absorbing forces

$$N_{bd,fi,Rd(t)} \geq N_{fi,Ed}$$

The bond force $N_{bd,fi,Rd}$ (t) in the composite joint is obtained by integrating the temperature-dependent composite stress $f_{bd,fi}$ ($\Theta(t)$) via the load-transmitting surface of the rebar

$$N_{bd,fi,Rd}(t) = \pi \cdot \emptyset \cdot \int_{0}^{l_{v}} f_{bd,fi}(\theta(t,x)) dx$$

with l_{ν} : Development depth. The bond and acting forces are identical:

$$N_{bd,fi,Rd(t)} = N_{fi,Ed}$$

The development depth I_{ν} for a defined time t corresponds to the required anchorage length $I_{b,rqd,fi}$ (t) according to the corresponding ETA and DIN EN 1992-1-1, Equation (8.3). Analogous to the application case A and the cold case, the design value $I_{bd,fi}$ (t) of the anchorage length in case of fire shall be determined according to DIN EN 1992-1-1, chapter 8.4.4.

4.6.5.2. Steel failure

In contrast to the failure due to pull-out, the check for steel failure must be performed at the most unfavorable check section, i.e. taking into account the maximum temperature occurring along the reinforcement bars at a given time t. The verification can be performed analogous to application A by means of the temperature criterion or by comparing the acting and the absorbing force.

Table 14: Tension load for different fire duration

Table 1	4: Tension I	oad for diffe	erent tire du									
				N	$_{bd,fi}$ [kN] d =	16 mm						
				Good b	ond conditio	ns, C20/25						
WIT-PE 1000								WIT-UH 300				
Fire duration [min]												
[cm]	30	60	60	90	120							
16	20.1	13.6	8.4	4.8	2.2	1.2	24.8	20.0	16.4	13.4		
18	23.5	1 <i>7</i> .1	12.2	7.7	3.5	2.0	28.3	23.5	19.9	16.9		
20	27.0	20.5	15. <i>7</i>	11.5	5.3	3.0	31.7	26.9	23.3	20.4		
22	30.5	24.0	19.1	15.1	7.9	4.5	35.2	30.4	26.8	23.9		
24	33.9	27.5	22.7	18.6	11.4	6.4	38.7	33.9	30.3	27.3		
25	35.7	29.3	24.3	20.3	13.4	7.7	40.4	35.6	32.0	29.1		
26	37.4	30.9	26.1	22.1	15.2	9.1	42.1	37.4	33.7	30.8		
28	40.9	34.4	29.5	25.6	18.8	12.6	45.6	40.8	37.2	34.3		
30	44.3	37.9	33.0	29.1	22.4	16.5	49.1	44.3	40.7	37.8		
32	47.8	41.4	36.5	32.5	25.8	20.1	52.5	47.8	44.2	41.2		
34	51.3	44.8	39.9	36.0	29.3	23.7	56.0	51.2	47.6	44.7		
36	54.7	48.3	43.4	39.5	32.8	27.2	59.5	54.7	51.1	48.2		
38	58.2	51.8	46.9	42.9	36.2	30.7	62.9	58.2	54.6	51.7		
40	61.7	55.3	50.3	46.4	39.7	34.2	66.4	61.6	58.0	55.1		
45	70.3	63.9	59.0	55.1	48.4	42.8	<i>75</i> .1	70.3	66.7	63.8		
50	79.0	72.5	67.7	63.7	57.1	51.5	83.7	79.0	75.4	72.4		
55	87.7	81.2	76.4	72.4	65.7	60.2	92.4	87.6	84.0	81.1		
60	96.4	89.9	85.1	81.1	74.4	68.8	101.1	96.3	92.7	89.8		
65	105.0	98.6	93.7	89.7	83.0	77.5	109.8	105.0	101.4	98.5		
70	113.7	107.3	102.4	98.4	91.7	86.2	118.4	113. <i>7</i>	110.1	107.1		
75	122.4	115.9	111.1	107.1	100.4	94.8	127.1	122.3	118.7	115.8		
80	131.0	124.6	119.7	115.7	109.1	103.5	135.8	131.0	127.4	124.4		
85	139.7	133.3	128.4	124.4	117.7	112.2	144.4	139.7	136.1	133.1		
90	148.4	141.9	13 <i>7</i> .1	133.1	126.4	120.9	153.1	148.3	144.7	141.8		
95	1 <i>57</i> .1	150.6	145.8	141.8	135.1	129.5	161.8	157.0	153.4	150.5		
100	165.7	159.3	154.4	150.4	143.8	138.2	1 <i>7</i> 0.5	165.7	162.1	159.1		
110	183.1	176.6	171.8	167.8	161.1	155.5	187.8	183.0	179.4	176.5		
120	200.4	193.9	189.1	185.1	1 <i>7</i> 8.5	172.9	205.1	200.4	196.8	193.8		
130	217.7	211.3	206.5	202.5	195.8	190.2	222.5	217.7	214.1	211.2		
140	235.1	228.6	223.8	219.8	213.1	207.6	239.8	235.0	231.4	228.5		
150	252.4	246.0	241.1	237.1	230.5	224.9	257.2	252.4	248.8	245.8		
160	269.8	263.3	258.5	254.5	247.8	242.3	274.5	269.7	266.1	263.2		

^{*}For other diameters and concrete strengths, please contact Würth technical support

Bibliography

European Committee for Standardization "EN 206 Concrete - Specification, performance, production and conformity", 2006.

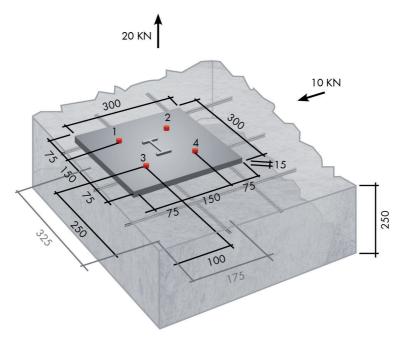
European Committee for Standardization, "Eurocode 0: Basis of structural design, EN 1990:2002+A1", 2010. European Committee for Standardization, "Eurocode 1: Actions on structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings, EN 1991-1-1", 2002.

European Committee for Standardization, "Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, EN 1992-1-1", 2004.

European Committee for Standardization, "Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design, EN 1992-1-2", 2004.

European Committee for Standardization, "Eurocode 2: Design of concrete structures - Part 4: Design of fastenings for use in concrete; EN 1992-4", 2018.

European Committee for Standardization, "Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings, EN 1993-1-1", 2005.


European Committee for Standardization, "Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings; EN 1998-1:2004".

DIN EN 13501-2: Fire Classification of Construction Products and Building Elements - Part 2: Classification Using Data From Fire Resistance Tests, Excluding Ventilation Services: 2016.

Reichel, D.-E. (2020, October). Tragverhalten Nachträglicher Bewehrungsanschlüsse im Brandfall am Beispiel des Würth Injektionssystems WIT-PE 1000 (Load Behavior of Post-installed Reinforcement in the Event of Fire with the Example of the Würth Injection System WIT-PE 1000). ql^2/8, pp. 16-25.

DESIGN EXAMPLES – BONDED ANCHORS

Actions						
Design value of tensile load		Ng=	20	kN		
Number of anchors in the group loaded	with tension	n =	4			
Design value of tensile load acting on a s	single anchor	$N_{ed}^{h} = N_{ed}^{g}/n =$	5	kN		
Percent of sustained load fro	om total load	a _{sus}	70	%		
Design value of shear load		$\Lambda_a^{2q} =$	10	kN		
Number of anchors in the group loads	ed with shear	n =	4			
Design value of shear load acting on a s	single anchor	$V_{ed}^{h} = V_{ed}^{g}/n =$	2.5	kN		
Anchor data						
	Anchor type		WIT-UH 300 + W-	VD-A/S M12		
	Steel grade		5.8			
Anc	hor diameter	M	12			
Anch	norage depth	h _{ef} =	11			
Base material						
Characteristic compressive cof concrete	cube strength e at 28 days	f _{ck,cube} =	25	N/mm²		
Characteristic compressive c	cube strength e at 28 days	$f_{ck,cyl} =$	20 N/			
Cracked concrete		Non-cracked concrete	~			

Structural verification										
Tension		Shear								
$\beta_{N,s} =$	N _{Ed} / N _{Rd,s}	$\beta_{V,s} =$	V _{Ed} / V _{Rd,s}							
β _{N,s} =	18 %	β _{V,s} =	12 %							
$\beta_{N,p} =$	$N_{Ed}^h / N_{Rd,p}$	$\beta_{V,cp} =$	V _{Ed} / V _{Rd,cp}							
$\beta_{N,p} =$	30 %	$\bar{\beta}_{V,cp} =$	9 %							
$\bar{\beta}_{N,c}$ =	$N_{Ed}^h / N_{Rd,c}$	β _{V,c} =	V _{Ed} / V _{Rd,c}							
$\beta_{N,c} =$	35 %	β _{V,c} =	55 %							
$\beta_{N,sp} =$	$N_{Ed}^h / N_{Rd,sp}$									
$\beta_{N,sp} =$	13 %									

Assessment of steel failure only		
	Utilization	Verification
Tension	18 %	β _{N,max} ≤ 1.00
Shear	12 %	β _{V,max} ≤ 1.00
Tension/shear combination	5 %	$\beta_{N,max}^{2.0} + \beta_{V,max}^{2.0} \le 1.00$
II - Required verification of p	ost-installed anchor	in combined tension and shear load:
Assessment of failure modes other than steel		
	Utilization	Verification
Tension	35 %	β _{N,max} ≤ 1.00
		0 100
Shear	55 %	$\beta_{V,max} \leq 1.00$

A. Required verification of post-installed anchor in tension									
1. Steel failure									
N _{Rd,s}	=	28.1	kN						
$\beta_{N,s}$	=	0.18							
2. Combined p	ull	l-out an	d con	crete failure					
$N_{Rd,p} = N_R^0$	$N_{Rd,p} = N_{Rd,p}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$								
N ^o _{Rd,p}	=	44.2	kN						
a. Influence of concret	e str	ength							
f _{b,N}	=	1.0							
b. Influence of embed	men	t depth							
f _{hef}	=	1.0							

DESIGN EXAMPLES – BONDED ANCHORS

c. Influence of spacing												
S _{cr,Np}	=	330	mm									
s _x	=	150	mm	s _x / s _{cr,p}	=	0.45	f _{sx,p}	=	0.73			
S _y	=	150	mm	s _y / s _{cr,p}	=	0.45	f _{sy,p}	=	0.73			
d. Influence of edge distance												
C _{cr,Np}	=	165	mm									
c _x	=	100	mm	c _x / c _{cr,p}	=	0.61	f _{cx,1,p}	=	0.88			
							f _{cx,2,p}	=	0.81			
c _y	=	250	mm	c _y / c _{cr,p}	=	1.52	$f_{cy,p}$	=	1.00			
e. Influence of sustain	ed lo	ading		,				•				
f _{sus}	=	1.0										
$N_{_{Rd,p}}$	=	16.79	kN									
$\beta_{N,p}$	=	0.3										

3. Concrete co	3. Concrete cone failure											
$N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$												
N ⁰ _{Rd,c}	=	37.8	kN									
a. Influence of concrete strength												
f _{b,N}	=	1.0										
	b. Influence of embedment depth											
f _{hef}	=	1.0										
c. Influence of spacing												
S _{cr,N}	=	330	mm									
s _x	=	150	mm	s _x / s _{cr,N}	=	0.45	f _{sx}	=	0.73			
s _y	=	150	mm	$s_y / s_{cr,N}$	=	0.45	f _{sy}	=	0.73			
d. Influence of edge d	listar	nce										
C _{cr,N}	=	165	mm									
C _x	=	100	mm	c _x / c _{cr,N}	=	0.61	f _{cx,1}	=	0.88			
							f _{cx,2}	=	0.81			
C _y	=	250	mm	$c_y/c_{cr,N}$	=	1.52	f_{cy}	=	1.00			
N _{Rd,c}	=	14.36	kN									
$\beta_{\text{N,c}}$	=	0.35										

4. Splitting failure

No verification is required if at least one of the following conditions is fulfilled.

- a. The edge distance in all directions is $c \ge 1.0 \ c_{c_{c,sp.}}$ for single fasteners and $c \ge 1.2 \ c_{c_{c,sp.}}$ for groups of fasteners and the member depth is $h \ge h_{min}$ in both cases, with h_{min} corresponding to $c_{c_{c,sp}}$.
- b. The characteristic resistances for concrete cone failure and pull-out failure or combined pull-out and concrete failure (bonded fasteners) are calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to wk ≈ 0.3 mm.

$N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,1,sp}$

			Verification						
c _x	=	100	mm	C _{cr,sp}	=	264	mm	$c_x \ge c_{cr,sp}$	check required
				1.2 c _{cr,sp}		316.8	mm		check required
C _y	=	250	mm	C _{cr,sp}	=	264	mm	$c_y \ge c_{cr,sp}$	check required
				1.2 c _{cr,sp}	=	316.8	mm	$c_y \ge 1.2 c_{cr,sp}$	check required
h	=	250	mm	h _{min}	=	140	mm	$h \ge h_{min}$	V
N ⁰ _{Rd,sp}	=	37.8	kN						

a. Influence of concrete strength

$$f_{b.N} = 1.00$$

b. Influence of embedment depth

f _{hef}	=	1.00
------------------	---	------

c. Influence of Spacing

S _{cr,sp}	=	220	mm						
s _x	=	150	mm	s _x / s _{cr,sp}	=	0.68	f _{sx,sp}	=	0.85
s _y	=	150	mm	s _y / s _{cr,sp}	=	0.68	f _{sy,sp}	=	0.85

d. Influence of edge distance

C _{cr,sp}	=	110	mm						
c _x	=	100	mm	c _x / c _{cr,sp}	=	0.91	f _{cx,1,sp}	=	0.98
c _y	=			c _y / c _{cr,sp}			f _{cx,2,sp}	=	1
							f _{cy,sp}	=	1

e. Influence of concrete member thickness

h	=	250	mm	h _{min}	=	140	h/h _{min}	=	1.79
f_h	=	1.48							
$N_{\text{Rd,sp}}$	=	39.6	kN						
$\beta_{N,sp}$	=	0.13							

DESIGN EXAMPLES – BONDED ANCHORS

B. Required verification of post-installed anchor in shear

1. Steel failure, shear load without lever arm

$V_{\rm Rd,s}$	=	20.2	kΝ
βν	=	0.12	

2. Concrete pry-out

$V_{\rm Rd,c}$	=	$k \cdot min(N_{Rd})$,p; N _{Rd,c})	
$N_{\text{Rd,c}}$	=	14.36	kN	
k	=	2		
$V_{\rm Rd,cp}$	=	28.72	kN	
$\beta_{\text{V,cp}}$	=	0.09		

3. Concrete edge breakout

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max (10 h_{ef}; 60 d).$

For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

$$V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{hef,V} f_{s,V} \cdot f_{c1,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{hef,V}$$

$$V_{pb,c}^{0} = 4.6 \quad kN$$

a. Influence of concrete strength

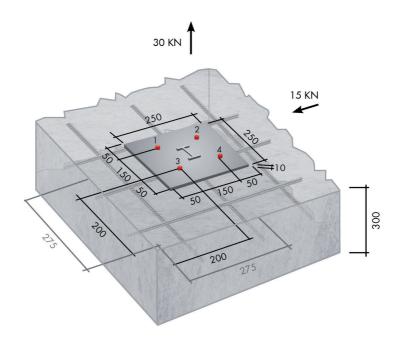
$$f_{b,N} = 1.00$$

b. Influence of embedment depth

c. Influence of spacing

In groups loaded perpendicular to the edge, only two adjacent anchors closest and parallel to the edge carry the load. The same spacing should be used for the verification.

S	=	150	mm	c ₁	=	100	s/c ₁	=	1.5	t s,v	=	1.5
d. Influence of edge distance c ₁												
c ₁	=	100	mm	d	=	12	c ₁ /d	=	8.33	f _{c1,v}	=	1.26
e. Influence of edge distance \mathbf{c}_2												
c ₂	=	250	mm	c ₁	=	100	c ₂ /c ₁	=	2.50	f _{c2,v}	=	1
f. Influence on load di	rectio	on										


а	=	0	0
f	=	1	

g. Influence on memb	Influence on member thickness												
h	=	$=$ 250 mm c_1 $=$ 100 h/c_1 $=$ 2.50											
f _h	=	1											
$V_{\text{Rd,c}}$	=	9.04	kN	for a single	or a single anchor								
$\beta_{V,c}$	=	0.55											

DESIGN TEMPLATE - MECHANICAL ANCHORS

Actions						
Design value of tensile load		Ng =		30	kN	
Number of anchors in the group loaded with t	ension	n =		4		
Design value of tensile load acting on a single o	nchor	$N_{ed}^{h} = N_{ed}^{g}/n =$		7.5	kN	
Design value of shear load		$\bigvee_{ed} =$		15	kN	
Number of anchors in the group loaded with	shear	n =		4		
Design value of shear load acting on a single o	nchor	$V_{ed}^{h} = V_{ed}^{g}/n =$		3.75	kN	
Anchor data						
Ancho	r type		W-FAZ/A4 M			
Anchor die	ımeter	M	12			
Anchorage	depth	h _{ef} =			70	
Base material						
	Comp	ressive strength class of concrete				
Characteristic compressive cube str of concrete at 28	•	$f_{ck,cube} =$		37	N/ mm²	
Characteristic compressive cube str of concrete at 28	-	$f_{ck,cyl} =$		30	N/ mm²	
Cracked concrete	V	Non-cracked concrete				

Structural verification										
Tension		Shear								
$\beta_{N,s} =$	Nh / N _{Rd,s}	$\beta_{V,s} =$	V _{Ed} / V _{Rd,s}							
$\beta_{N,s} =$	28 %	$\beta_{V,s} =$	16 %							
	N _{Ed} / N _{Rd,p}	$\beta_{V,cp} =$	V _{Ed} / V _{Rd,cp}							
$\beta_{N,p} =$	57 %	β _{V,cp} =	13 %							
$\beta_{N,c}$ =	N _{Ed} / N _{Rd,c}	β _{ν,cp} =	V _{Ed} / V _{Rd,cp}							
β _{N,c} =	62 %	β _{ν,cp} =								
$\beta_{N,sp} =$	N _{Ed} / N _{Rd,sp}									
$\beta_{N,sp} =$	0 %									

I - Required verification of po	st-installed anchor i	n combined tension and shear load:								
Assessment of steel failure only										
	Utilization	Verification								
Tension	28 %	β _{N,max} ≤ 1.00								
Shear	16 %	β _{V,max} ≤ 1.00								
Tension/shear combination	10 %	$\beta_{N,max}^{2.0} + \beta_{V,max}^{2.0} \le 1.00$								
II - Required verification of pe	ost-installed anchor	in combined tension and shear load:								
Assessment of failure modes other than steel										
	Utilization	Verification								
Tension	62 %	β _{N,max} ≤ 1.00								
Shear	62 %	β _{V,max} ≤ 1.00								
Tension/shear combination	98 %	$\beta_{N,max}^{1.5} + \beta_{V,max}^{1.5} \le 1.00$								

A. Required v	A. Required verification of post-installed anchor in tension									
1. Steel failure	I. Steel failure									
N _{Rd,s}	=	26.7	kN							
$oldsymbol{eta}_{N,s}$	=	28	%							
2. Pull-out	2. Pull-out									
$N_{\text{Rd,p}}$	=	$N^{o}_{Rd,p} \cdot f_{b,N}$								
a. Influence of concre	te str	ength								
$f_{b,N}$	=	1.22								
$N_{_{Rd,p}}^{\circ}$	=	10.70	kN							
$N_{_{Rd,p}}$		13.05	kN							
$\beta_{N,p}$	=	57	%							

DESIGN TEMPLATE - MECHANICAL ANCHORS

3. Concrete br	3. Concrete breakout										
$N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$											
N ⁰ _{Rd,c}	=	13.4									
a. Influence of concre	a. Influence of concrete strength										
$f_{b,N} = 1.22$											
b. Influence of spacing	b. Influence of spacing										
S _{cr,N}	=	210	mm								
s _x	=	150	mm	s _x / s _{cr,N}	=	0.71	1	sx	=	0.86	
s _y	=	150	mm	$s_y / s_{cr,N}$	=	0.71	1	sy	=	0.86	
d. Influence of edge d	istar	ice									
C _{cr,N}	=	105	mm								
c _x	=	200	mm	c _x / c _{cr,N}	=	1.90	f	ς,1	=	1.00	
							f	,2	=	1.00	
c _y	=	200	mm	$c_y/c_{cr,N}$	=	1.90	f	cy	=	1.00	
$N_{_{\mathrm{Rd,c}}}$	=	12.09	kN								
$\beta_{\text{N,c}}$	=	62	%								

4. Splitting failure

No verification is required if at least one of the following conditions is fulfilled.

a. The edge distance in all directions is $c \ge 1.0$ c_{cr,sp.} for single fasteners and $c \ge 1.2$ c_{cr,sp.} for groups of fasteners and the member depth is $h \ge h_{min}$ in both cases, with h_{min} corresponding to $c_{cr,sp.}$

(applies)

b. The characteristic resistances for concrete cone failure and pull-out failure (headed and post-installed mechanical fasteners) or combined pull-out and concrete failure (bonded fasteners) are calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to wk ≈ 0,3 mm.

 $N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef}$

							Verification	
c _x	=	mr	m	C _{cr,sp}	=	mm	C _x ≥ C _{cr,sp}	Not required
			·	=	mm		Not required	
c _y	=	mr	m	C _{cr,sp}	=	mm	$c_y \ge c_{cr,sp}$	Not required
					=	mm	$c_y \ge 1.2 c_{cr,sp}$	Not required
h	=	mr	m	$h_{\scriptscriptstyle min}$	=	mm	h ≥ h _{min}	
$N_{\text{Rd,sp}}^{0}$	=	kN	1					
a. Influence of concret	e str	ength						

I_{b,N} =

b. Influence of embedment depth

f_{bof} =

c. Influence of spacing	3									
S _{cr,sp}	=		mm							
s _x	=		mm	s _x / s _{cr,sp}	=			f _{sx,sp}	=	
S _y	=		mm	s _y / s _{cr,sp}	=			f sy,sp	=	
d. Influence of edge d	d. Influence of edge distance									
C _{cr,sp}	=		mm							
C _x	=		mm	c _x / c _{cr,sp}	=			f _{cx,1,sp}	=	
								f _{cx,2,sp}	=	
c _y	=		mm	c _y / c _{cr,sp}	=			f _{cy,sp}	=	
e. Influence of con	ıcre	te membe	er thic	kness						
h	=		mm	h _{min}	=		mm	h/h _{min}	=	
f _h	=									
N _{Rd,sp}	=		kN							
$\beta_{N,sp}$	=									

B. Required verification of	f post-installed	anchor in sh	ear
1. Steel failure, shear load with	out lever arm		

,,				-
$V^{o}_{Rd,s}$	=	24	kN	
ß	_	16	%_	

2. Concrete pry-out

. ,				
V _{Rd,c}	=	$k\cdot N_{_{Rd,c}}$		
N _{Rd,c}		12.09		
k	=	2,4		
V _{Rd,cp}	=	29.02	kN	
$\beta_{V,cp}$	=	13	%	

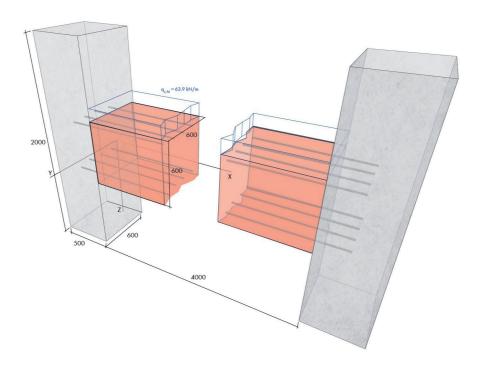
3. Concrete edge breakout

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max (10 h_{sf}; 60 d)$.

For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

$V_{\rm Rd,c}$	=	$V_{_{Rd,c}}^{o} \cdot f_{_{b,V}} \cdot$	$f_{s,V} \cdot f_{c2}$,v · f _a · f _l
V ^O _{Rk c}	=	21.2	kN	

a. Influence of concrete strength


DESIGN TEMPLATE – MECHANICAL ANCHORS

b. Influence of spacing												
In groups loaded perp spacing should be use				only two ac	djace	ent anchors	closest and parallel	to th	ne edge co	irry the lo	ad.	The same
s	=	150	mm	c ₁	=	200	s/c ₁	=	0.75	f	=	1.25
c. Influence of edge d	istan	ice										
C ₂	=	200	mm	c,	=	200	c ₂ /c ₁	=	1	f _{c2,v}	=	0.75
d. Influence on load d	lirect	ion										
а	=	0	۰									
fa	=	1										
e. Influence on membe	er th	ickness										
h	=	300	mm	c ₁	=	200	h/c ₁	=	1.50			
f _h	=	1										
V _{Rd,c}	=	24.25	kN	for a single	e and	chor						
β _{ν,c}	=	62	%									

DESIGN EXAMPLE - BEAM BETWEEN TWO COLUMNS

Base material of existing &	new				
Characteristic compressive cube streng	f _{ck,cube} =		N/mm²		
Characteristic compressive cube streng	th of concrete at 28 days	$f_{ck,cyl} =$	f _{ck,cyl} = 30 N/mn		N/mm²
Cracked concrete	~	Non-cracked concrete			
Roug	=	rough			

Geometry			
Existing structure:			
Height	H =	2000	mm
Width	W =	600	mm
Depth	D =	500	mm
New structure:			
Height	H =	600	mm
Width	W =	600	mm
Span length	L=	4000	mm
Effective span length	L _{ef} =	4500	mm

Reinforcement			
Injection Anchor		WIT-UH 300	
Top reinforcement diameter	Ø =	16	mm
Bottom reinforcement diameter	Ø =	16	mm
Top reinforcement:			
Number of bars	n _{Top}	4	
Anchorage length	 bd,1	193	mm
Drill hole depth	l _{v1}	250	mm
Drill diameter	d _o	20	mm
Bottom reinforcement:			
Number of bars	n _{Bot}	4	
Anchorage length	l _{bd,2}	196	mm
Drill hole depth	l _{v2}	250	mm
Drill diameter	d _o	20	mm

Actions
Beam self-weight = $25 * (0.6*0.6) * 1.35 = 12.15 \text{ kN/m}$
Slab self-weight = 25 * 0.25 * 4 m * 1.35 = 33.75 kN/m
=> Dead load = 12.15 + 33.75 = 45.9 kN/m
Imposed load = 3 kN/m² (Category B - Office)
$=>$ Live load = 3 * 4 m * 1.5 = $\frac{18}{8}$ kN/m

A - Determination of the additional normal force due to shear loading								
F _{Ed}	$F_{Ed} = \max\{ V_{z,ed} \cdot a_{i}/z; 0.5 \cdot V_{z,ed} \}$ EN 1992-1-1: 9.2.1.4 (9.3); NCI 9.3DE							
V _{z,ed}	=	143.775 kN						
F _{Ed}	=	159.75 kN						

B - Verification of steel							
Bottom reinforcemen	t (new)						
$\beta_{sb,2}$	=	$\sigma_{_{ extsf{Ed}}}/\sigma_{_{ extsf{Rd}}}$	degree of capacity utilisation				
$\sigma_{_{Ed}}$	=	$N_{Ed}/A = 159.74 / 4 (\pi \times 16^2/4) = 198.63 \text{ N/mm}^2$	Design value of the actions				
$\sigma_{_{\!\scriptscriptstyle R}}$	=	$f_{yk}/\gamma_{Ms} = 500 / 1.15 = 434.78 \text{ N/mm}^2$					
β,,, 2	=	$\sigma_{\rm Ed} / \sigma_{\rm Rd} = 198.63 / 434.78 = 0.46$	degree of capacity utilisation				

DESIGN EXAMPLE - BEAM BETWEEN TWO COLUMNS

C - Verification of concrete						
Bottom reinforcement (anchorage)						
l _{bd}	=	$max(\alpha_1$	$\alpha_2 \cdot \alpha_3 \cdot \alpha_5 \cdot _{b,rqd}; _{b,min}$	EN 1992-1-1: 8.4.4 (8.4)		
l _{b,rqd}	=	$(d/4) \cdot (\sigma_{sd} / f_{bd}) = (7)$	16/4) x (198.63 / 2.7) = 294 mm	EN 1992-1-1: 8.4.3 (8.3)		
l _{b,min}	=	$\max(0.3 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_$	α ₄ · I _{b,rqd,min} ; 2/3 · 10 · d; 2/3 · 100 mm) · 1.0	EN 1992-1-1: 8.4.4 (8.6)		
l b,rqd,min	=	$(d/4) \cdot (f_{yd} / f_{bd}) = (16/4) \times (500/1.15/2.7)$ = 644 mm		EN 1992-1-1: 8.4.3 (8.3)		
l _{b,min}	=	max $(0,3 \times 1 \times 1 \times 644; 2/3 \times 10 \times 16; 2/3 \times 100) = 193.2 \text{ mm}$				
l _{bd}	=	max (1 x 1 x 1x 1x 0.67 x 294 ; 193.2) = 196.9 mm				
Ļ	=	250	mm	9.2.1.4 (3) extension to the calculated support position (effective span), which is in this case in the middle of the column (Commentary of the German National Annex)		

Shear at the joint					
eta_{joint}	=	V_{Edi}/V_{Rdi}	degree of capacity utilisation		
V _{Edi}	=	$\beta \cdot V_{Ed} / (z \cdot bi) = 1 \times 143.775 / (600 \times 600)$	EN 1992-1-1: 6.2.5 (6.24)		
		$= 0.399 \text{ N/mm}^2$			
V_{Rdi}	=	$M_{in} \left(V_{Rdic'} \; V_{Rc,max} \right)$	EN 1992-1-1: 6.2.5 (1)		
V_{Rdic}	=	$c \cdot f_{ctd} + (\mu \cdot \sigma_D + \mu \cdot \sigma_z) = 0.4 \times 1.0174 +$	EN 1992-1-1: 6.2.5 (6.25)		
		$(0.7 \times 0 + 0.7 \times 0) = 0.407 \text{ N/mm}^2$			
V _{Rc,max}	=	$0.5 \cdot v \cdot f_{cd}$	EN 1992-1-1: 6.2.5 (6.25)		
f _{cd}	=	$\alpha_{_{cc}}\cdot f_{_{ck}}$ / $\gamma_{_c}$ = 0.85 x 20/1.5 = 14.17 N/mm²	EN 1992-1-1: 3.1.6 (3.15)		
$V_{Rc,max}$	=	$0.5 \cdot v \cdot f_{cd} = 0.5 \times 0.5 \times 14.17$	EN 1992-1-1: 6.2.5 (6.25)		
·		$= 3.54 \text{ N/mm}^2$			
eta_{joint}	=	$V_{Edi} / V_{rdi} = 0.399/0.407 = 0.98$	Degree of capacity utilisation		

ANCHOR SELECTION

Anchor/Screw	Base m	naterial		Load tatic Seismic Seismic Fati C1 C2				
	Non- cracked	Cracked	Static			Fatigue		
W-VIZ Art. No. 0905 440	✓	✓	√	✓	✓	√ 1)		
WIT-BS Art. No. 0905 450	✓	✓	√	_	_	-		
WIT-UH 300 M Art. No. 5918 500	✓	√	✓	√	√	-		
WIT-UH 300 R Art. No. 5918 500	√	√	√	√	_	-		
WIT-PE 1000 M Art. No. 5918 605	√	√	✓	✓	√	_		
WIT-PE 1000 R Art. No. 5918 605	✓	✓	✓	√	_	_		
WIT-PE 510 M Art. No. 5918 615	✓	√	√	_	_	_		
WIT-PE 510 R Art. No. 5918 615	✓	√	√	_	_	_		
WIT-VM 250 M Art. No. 0903 450	√	√	✓	√	_	_		
WIT-VM 250 R Art. No. 0903 450	✓	√	√	✓	_	_		
WIT-PM 200 M Art. No. 5918 24	✓	_	✓	_	_	•		
W-BS Art. No. 5929	2)	✓	✓	√	√	_		
W-FAZ Art. No. 5928	✓	√	✓	√	√	_		
W-HAZ Art. No. 0905 2	✓	√	✓	√	√	_		
W-FA Art. No. 5932	✓	_	✓	_	_	_		
W-ED Art. No. 0904	✓	_	✓	_	_	_		

	Fas	tening mate	erial		Fi	re resistan	ce	Page
Rebar	Steel,	Steel,	Stainless	High cor-	R 120	ZTV-Ing	g 30/90	number
	zinc electro plated	Hot- dipped	steel A4	rosion resistant steel HCR		A 4	HCR	
-	✓	✓	✓	✓	✓	-	✓	72
-	√	_	√	-	-	-	_	134
_	√	√	√	√	√	_	_	160
✓	_	_	_	_	3)	_	_	192
-	✓	✓	✓	✓	√	_	_	222
√	-	_	_	_	3)	-	_	252
_	✓	✓	✓	✓	_	-	_	280
✓	_	_	_	_	3)	_	_	304
_	√	√	√	√	√	-	_	326
✓	_	_	_	-	3)	_	_	352
-	√	√	√	√	-	-	_	376
_	√	_	√	√	✓	_	_	400
_	✓	_	✓	✓	✓	_	√	422
_	✓	_	√	_	✓	_	_	454
_	✓	✓	✓	✓	_	_	✓	488
_	√	_	√	√	√	_	_	524

W-VIZ-A/S

Galvanized (5 microns): M8 - M24

W-VIZ-A/F

Hot-dipped: M8 - M24

WIT-VIZ

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Type of installation		
Pre-positioned	In-place	Stand-off
✓	/	1

Installation condition	n	
Dry concrete	Wet concrete	Flooded drill hole
✓	✓	✓
Drilling method		
Hammer drill	Diamond drill	Hollow drill
	1	1

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	ETAG 001-T5	ETA-04/0095, 11.05.2017
Fire resistance	MFPA Leipzig GmbH	TR 020	GS 3.2/18-075-1
LEED	eurofins		14.06.13
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 11048 <i>75</i> A	07.01.14

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

- Bonding expansion system WIT-VIZ consists of an anchor rod WIT-VIZ-A/S and injection mortar WIT-VIZ or WIT-EXPRESS
- Temperature range I: -40°C to +80°C (max. long term/short term base material temperature +50°C/+80°C)
- Dry or wet conditions of drill hole, hammer and diamond core drilling
- Installation temperature range +5°C to +40°C

Mean ultimate resistance

Anchor type: WIT-VIZ, M8 - M12

Thread size				M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth		h _{ef}	[mm]	40	50	60	75	75	70	80
Non-cracked concrete										
Tension	C20/25	N _{Ru,m}	[kN]	15.0	22.0	30.9	30.9	38.4	40.6	61.6
Shear	C20/25	V _{Ru,m}	[kN]	15.2	14.8	24.1	21.4	40.5	40.5	40.5
Cracked concrete										
Tension	C20/25	N _{Ru,m}	[kN]	11.2	1 <i>7</i> .8	25.5	26.9	31.8	37.5	44.0
Shear	C20/25	V _{Ru,m}	[kN]	15.2	14.8	24.1	24.1	40.5	40.5	40.5

Anchor type: WIT-VIZ, M12 - M16

Thread size				M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth		h _{ef}	[mm]	95	100	110	125	90	105	125
Non-cracked concrete										
Tension	C20/25	N _{Ru,m}	[kN]	61.6	65.9	65.9	65.9	62.2	80.9	100.9
Shear	C20/25	V _{Ru,m}	[kN]	40.5	40.5	40.5	40.5	75.4	75.4	75.4
Cracked concrete										
Tension	C20/25	N _{Ru,m}	[kN]	47.1	61.3	61.3	61.3	44.7	68.3	99.2
Shear	C20/25	V _{Ru,m}	[kN]	40.5	40.5	40.5	40.5	75.4	75.4	75.4

Thread size				M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth		h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	170	200	225
Non-cracked concrete											
Tension	C20/25	N _{Ru,m}	[kN]	100.9	115.9	107.9	196.0	196.0	201.0	237.6	237.6
Shear	C20/25	V _{Ru,m}	[kN]	75.4	75.4	82.3	11 <i>7</i> .6	117.6	169.0	169.0	169.0
Cracked concrete											
Tension	C20/25	N _{Ru,m}	[kN]	99.2	104.7	94.3	136.6	136.6	133.5	183.4	183.4
Shear	C20/25	V _{Ru,m}	[kN]	75.4	75.4	82.3	117.6	117.6	169.0	169.0	169.0

Characterstic loads

Anchor type: WIT-VIZ, M8 - M12

Thread size				M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth		h _{ef}	[mm]	40	50	60	75	75	70	80
Non-cracked concrete										
Tension	C20/25	N.	[LKI]	9.0	17.4	22.9	25.0	32.0	28.8	35.2
	C50/60	IN _{Rk}	[kN]	14.2	18.0	25.0	25.0	35.0	45.6	54.0
Shear	≥ C20/25	V _{Rk}	[kN]	14.0	14.0	21.0	21.0	34.0	34.0	34.0
Cracked concrete	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Tension	C20/25	l N	[LKI]	8.7	12.2	16.0	22.4	22.4	20.2	24.6
	C50/60	N _{Rk}	[kN]	13.8	18.0	25.0	25.0	35.0	31.9	39.0
Shear	≥ C20/25	V _{Rk}	[kN]	14.0	14.0	21.0	21.0	34.0	34.0	34.0

Anchor type: WIT-VIZ, M12 - M16

······································										
Thread size				M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth		h _{ef}	[mm]	95	100	110	125	90	105	125
Non-cracked concrete						2 50.0 50.0 42.0 52.9 68.8 0 57.0 57.0 66.4 83.7 108.7				
Tension	C20/25		[[]	40.0	49.2	50.0	50.0	42.0	52.9	68.8
	C50/60	N _{Rk}	[kN]	54.0	57.0	57.0	57.0	66.4	83.7	108.7
Shear	≥ C20/25	V _{Rk}	[kN]	34.0	34.0	34.0	34.0	63.0	63.0	63.0
Cracked concrete										
Tension	C20/25		[[]]	31.9	34.4	39.7	48.1	29.4	3 <i>7</i> .1	48.1
	C50/60	IN _{Rk}	N _{Rk} [kN]	50.4	54.4	57.0	57.0	46.5	58.6	76.1
Shear	≥ C20/25	V _{Rk}	[kN]	34.0	34.0	34.0	34.0	58.8	63.0	63.0

Anchor Type: WIII-VIZ, I	W10-1W2-										
Thread size				M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth		h _{ef}	[mm]	145	160	115	170	190	170	200	225
Non-cracked concrete					.0 97.0 95.9 172.4 188.0 172.4 220.0 222						
Tension	C20/25	N.	II N II	75.0	90.0	60.7	109.0	128.8	109.0	139.1	166.0
	C50/60	N _{Rk}	[kN]	111.0	97.0	95.9	172.4	188.0	172.4	220.0	222.0
Shear	≥ C20/25	V _{Rk}	[kN]	63.0	63.0	70.0	98.0	98.0	141.0	141.0	141.0
Cracked concrete											
Tension	C20/25	N.	II N II	60.1	69.7	42.5	76.3	90.2	76.3	97.4	116.2
	C50/60	N _{Rk}	[kN]	95.1	97.0	67.1	120.7	142.6	120.7	154.0	183.8
Shear	≥ C20/25	V _{Rk}	[kN]	63.0	63.0	70.0	98.0	98.0	141.0	141.0	141.0

Design loads

Anchor type: WIT-VIZ, M8 - M12

Thread size				M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth		h_{ef}	[mm]	40	50	60	75	75	<i>7</i> 0	80
Non-cracked concrete	racked concrete $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Tension	C20/25	N.	[LVI]	6.0	11.6	15.2	16.7	21.3	19.2	23.5
	C50/60	IN _{Rd}	[kN]	9.5	12.0	16. <i>7</i>	16.7	23.3	30.4	36.0
Shear	≥ C20/25	V_{Rd}	[kN]	11.2	11.2	16.8	16.8	27.2	27.2	27.2
Cracked concrete										
Tension	C20/25	N.	[LVI]	5.8	8.1	10. <i>7</i>	14.9	14.9	13.4	16.4
	C50/60	N_{Rd}	[kN]	9.2	12.0	16. <i>7</i>	16.7	23.3	21.3	26.0
Shear	≥ C20/25	V_{Rd}	[kN]	11.2	11.2	16.8	16.8	27.2	26.9	27.2

Anchor type: WIT-VIZ, M12 - M16

=1 1 .										
Thread size				M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth		h _{ef}	[mm]	95	100	110	125	90	105	125
Non-cracked concrete										
Tension	C20/25	NI.	[[.5.1]	26.7	32.8	33.3	33.3	28.0	35.3	45.8
	C50/60	N _{Rd}	[kN]	36.0	38.0	38.0	38.0	44.3	55.8	72.5
Shear	≥ C20/25	V _{Rd}	[kN]	27.2	27.2	27.2	27.2	50.4	50.4	50.4
Cracked concrete										
Tension	C20/25	NI	[LVI]	21.3	23.0	26.5	32.1	19.6	24.7	32.1
	C50/60	N _{Rd}	[kN]	33.6	36.3	38.0	38.0	31.0	39.1	50.7
Shear	≥ C20/25	V _{Rd}	[kN]	27.2	27.2	27.2	27.2	39.2	49.4	50.4

Thread size				M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth		h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	170	200	225
Non-cracked concrete											
Tension	C20/25	N.	[LVI]	50.0	60.0	40.4	72.7	85.9	72.7	92.8	110.7
	C50/60	N _{Rd}	[kN]	74.0	64.7	<i>57</i> .1	114.9	125.3	114.9	146.7	148.0
Shear	≥ C20/25	V _{Rd}	[kN]	50.4	50.4	50.0	78.4	78,4	112.8	112.8	112.8
Cracked concrete											
Tension	C20/25	NI	[LA.I]	40.1	46.5	28.3	50.9	60.1	50.9	64.9	77.5
	C50/60	N _{Rd}	[kN]	63.4	64.7	44.8	80.5	95.1	80.5	102.7	122.5
Shear	≥ C20/25	V _{Rd}	[kN]	50.4	50.4	50.0	78.4	78.4	101.8	112.8	112.8

Recommended/allowable loads 1)

Anchor type: WIT-VIZ, M8 - M12

Thread size				M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth		h _{ef}	[mm]	40	50	60	75	75	70	80
Non-cracked concrete										
Tension	C20/25	N.	[LKI]	4.3	8.3	10.9	11.9	15.2	13. <i>7</i>	16.8
	C50/60	N _{rec}	[kN]	6.8	8.6	11.9	11.9	16. <i>7</i>	21.7	25.7
Shear	≥ C20/25	V _{rec}	[kN]	8.0	8.0	12.0	12.0	19.4	19.4	19.4
Cracked concrete										
Tension	C20/25	N	[LA.I]	4.1	5.8	7.6	10. <i>7</i>	10. <i>7</i>	9.6	11. <i>7</i>
	C50/60	rec	[kN]	6.6	8.6	11.9	11.9	16. <i>7</i>	15.2	18.6
Shear	≥ C20/25	V _{rec}	[kN]	8.0	8.0	12.0	12.0	19.4	19.2	19.4

Material safety factor γ_M and safety factor for action $\gamma_L = 1.4$ are included. The material safety factor depends on the failure mode.

Anchor type: WIT-VIZ, M12 - M16

7.										
Thread size				M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth		$h_{\rm ef}$	[mm]	95	100	110	125	90	105	125
Non-cracked concrete										
Tension	C20/25		[LNI]	19.0	23.4	23.8	23.8	20.0	25.2	32.7
	C50/60	N _{rec}	[kN]	25.7	27.1	27.1	27.1	31.6	39.9	51.8
Shear	≥ C20/25	V	[kN]	19.4	19.4	19.4	19.4	36.0	36.0	36.0
Cracked concrete										
Tension	C20/25		[LNI]	15.2	16.4	18.9	22.9	14.0	17.6	22.9
	C50/60	N _{rec}	[kN]	24.0	25.9	27.1	27.1	22.1	27.9	36.2
Shear	≥ C20/25	V _{rec}	[kN]	19.4	19.4	19.4	19.4	28.0	35.3	36.0

Material safety factor γ_M and safety factor for action $\gamma_L = 1.4$ are included. The material safety factor depends on the failure mode.

Anchor Type: WIII-VIZ, I	WIO-M2-										
Thread size				M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth		h _{ef}	[mm]	145	160	115	170	190	170	200	225
Non-cracked concrete											
Tension	C20/25	N.	[LVI]	35.7	42.9	28.9	51.9	61.4	51.9	66.3	<i>7</i> 9.1
	C50/60	N _{rec}	[kN]	52.9	46.2	40.8	82.1	89.5	82,1	104.8	105.7
Shear	≥ C20/25	V	[kN]	36.0	36.0	35.7	56.0	56.0	80.6	80.6	80.6
Cracked concrete											
Tension	C20/25	N.	[LVI]	28.6	33.2	20.2	36.3	42.9	36.3	46.4	55.3
	C50/60	N _{rec}	[kN]	45.3	46.2	32.0	57.5	67.9	57.5	73.3	87.5
Shear	≥ C20/25	V	[kN]	36.0	36.0	35.7	56.0	56.0	72.7	80.6	80.6

Material safety factor γ_M and safety factor for action $\gamma_L = 1.4$ are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing.
 The calculated design resistances are on the safe side. They will be lower than the exact values according to
 EN 1992-4. For an economical optimization, we recommend using the anchor design module of the Würth Technical
 Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- · Dry or wet conditions of drill hole. hammer drilling
- · Anchor material as specified in anchor material specification table

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80
Design steel resistance	N _{Rd,s}	[kN]	10.0	12.0	16.7	16.7	23.3	32.7	36.0

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Design steel resistance	N _{Rd,s}	[kN]	36.0	38.0	38.0	38.0	58.7	63.3	74.0

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	170	200	225
Design steel resistance	N _{Rd,s}	[kN]	74.0	64.7	<i>57</i> .1	125.3	125.3	148.0	148.0	148.0

2. Design pullout resistance

 $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

Table 2: Basic design resistance $N_{\text{Rd,p}}^{\text{O}}$ in case of pull-out failure of a single anchor

Anchor type: WIT-VIZ, M8 - M12

7									
Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80
Non-cracked concrete									
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	6.0	11.6	15.2	21.3	21.3	19.2	23.5
Cracked concrete									
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	5.8	8.1	10.7	14.9	14.9	13.4	16.4

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Non-cracked concrete									
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	26.7	32.8	33.3	33.3	28.0	35.3	45.8
Cracked concrete									
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	21.3	23.0	26.5	32.1	19.6	24.7	32.1

Anchor type: WIT-VIZ, M16 - M24

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Non-cracked concrete										
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	50.0	60.0	40.4	72.7	85.9	72.7	92.8	110.7
Cracked concrete										
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	40.1	46.5	28.3	50.9	60.1	50.9	64.9	77.5

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,V}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

3. Design concrete cone resistance

The decisive design resistance in tension is the lowest value of the following failure modes:

$$N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance $N_{Rd,c}^0$ in case of concrete cone failure of a single anchor

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12			
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	<i>7</i> 0	80			
Non-cracked concrete												
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	8.3	11.6	15.2	21.3	21.3	19.2	23.5			
Cracked concrete												
Design concrete cone resistance	N ^o _{Rd,c}	[kN]	5.8	8.1	10.7	14.9	14.9	13.4	16.4			

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16				
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125				
Non-cracked concrete													
Design concrete cone resistance	N ⁰ _{Rd.c}	[kN]	30.4	32.8	37.8	45.8	28.0	35.3	45.8				
Cracked concrete													
Design concrete cone resistance	N ^o _{Rd.c}	[kN]	21.3	23.0	26.5	32.1	19.6	24.7	32.1				

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Non-cracked concrete										
Design concrete cone resistance	N ⁰ _{Rd.c}	[kN]	57.3	66.4	40.4	72.7	85.9	72.7	92.8	110.7
Cracked concrete										
Design concrete cone resistance	N ⁰ _{Rd.c}	[kN]	40.1	46.5	28.3	50.9	60.1	50.9	64.9	77.5

Table 5: Characteristic edge distance $c_{cr,N}$ and spacing $s_{cr,N}$

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80
Spacing	S _{cr, N}	[mm]	120.0	150.0	180.0	225.0	225.0	210.0	240.0
Edge distance	C _{cr, N}	[mm]	60.0	75.0	90.0	112.5	112.5	105.0	120.0

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Spacing	S _{cr, N}	[mm]	285.0	300.0	330.0	375.0	270.0	315.0	375.0
Edge distance	C _{cr, N}	[mm]	142.5	150.0	165.0	187.5	135.0	157.5	187.5

Anchor type: WIT-VIZ, M16 - M24

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	170	190	170	200	225
Spacing	S _{cr, N}	[mm]	435.0	480.0	345.0	510.0	570.0	510.0	600.0	675.0
Edge distance	C ^{ct N}	[mm]	217.5	240.0	172.5	255.0	285.0	255.0	300.0	337.5

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders 13	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

 $^{^{\}rm 1)}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

^{2]} strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f_{sx}, f_{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 8: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
t _{cy}																			

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \le 0.3$ mm

Table 9: Design resistance $N_{Rd,sp}^0$ in case of concrete splitting failure of a single anchor

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12		
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80		
Non-cracked concrete											
Design splitting resistance	N ^O _{Rd,sp}	[kN]	5.0	6.0	10.7	13.3	13.3	13.3	23.5		

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Non-cracked concrete									
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	20.0	26.7	26.7	26.7	26.7	33.3	33.3

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Non-cracked concrete										
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	40.0	53.3	40.4	72.7	76.7	72.7	92.8	93.3

Table 10: Characteristic edge distance $c_{_{\mathrm{cr,sp}}}$ and spacing $s_{_{\mathrm{cr,sp}}}$

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	<i>7</i> 5	75	70	80
Characteristic spacing	S _{cr, sp}	[mm]	120.0	150.0	180.0	225.0	225.0	210.0	240.0
Characteristic edge distance	C _{cr, sp}	[mm]	60.0	75.0	90.0	112.5	112.5	105.0	120.0
Minimum member thickness	h _{min}	[mm]	100	100	120	150	150	140	160

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Characteristic spacing	S cr, sp	[mm]	300.0	330.0	375.0	270.0	315.0	375.0	375.0
Characteristic edge distance	C _{cr, sp}	[mm]	150.0	165.0	187.5	135.0	157.5	187.5	187.5
Minimum member thickness	h _{min}	[mm]	190	200	220	250	180	200	250

Anchor type: WIT-VIZ, M16 - M24

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	170	190	1 <i>7</i> 0	200	225
Characteristic spacing	S _{cr, sp}	[mm]	435.0	480.0	345.0	510.0	570.0	510.0	600.0	675.0
Characteristic edge distance	C _{cr, sp}	[mm]	217.5	240.0	172.5	255.0	285.0	255.0	300.0	337.5
Minimum member thickness	h _{min}	[mm]	290	320	230	340	380	340	400	450

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders 1)	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,sp , f sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , f sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 13: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

 $\text{3. Concrete edge failure } \qquad V_{\mathit{Rd,c}} = \ V_{\mathit{Rd,c}}^{\mathit{0}} \cdot f_{\mathit{b,V}} \cdot f_{\mathit{s,V}} \cdot f_{\mathit{c2,V}} \cdot f_{\mathit{a}} \cdot f_{\mathit{h}}$

1. Design steel shear resistance

Table 15: Design value of steel resistance $V_{\rm Rd,s}$ of a single anchor

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80
Design steel resistance	V _{Rd,s}	[kN]	11.2	11.2	16.8	16.8	27.2	27.2	27.2

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Design steel resistance	V _{Rd,s}	[kN]	27.2	27.2	27.2	27.2	50.4	50.4	50.4

Anchor type: WIT-VIZ, M16 - M24

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Design steel resistance	V _{Rd.s}	[kN]	50.4	50.4	50.0	78.4	78.4	112.8	112.8	112.8

2. Concrete pry-out resistance

$$V_{\rm Rd,c} = k_{\rm g} \cdot N_{\rm Rd,c}$$

Table 16: factor k_g for calculating design pry-out resistance

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	$h_{\rm ef}$	[mm]	40	50	60	75	75	70	80
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Design concrete pry-out resistance	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Concrete edge resistance

$$V_{\mathrm{Rd,c}} = V_{\mathrm{Rd,c}}^0 \cdot f_{\mathrm{b,V}} \cdot f_{\mathrm{s,V}} \cdot f_{\mathrm{c2,V}} \cdot f_{\mathrm{a}} \cdot f_{\mathrm{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V_{\mathrm{Rd,c}}^{\mathrm{O}}$ in case of concrete edge failure

Thread size	N	18	N	18	M	10	M	10	M	12	M	12	M	12
h _{ef} [mm]	4	.0	5	0	6	0	7	'5	7	'5	7	0	8	80
Edge distance c							V	r0 Rd,c			,			
[mm]								(N]						
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
40	3.0	2.1	3.1	2.2	-	2.4	-	2.5	-	-	-	-	-	-
45	3.5	2.5	3.7	2.6	-	2.8		2.9		-		-	-	-
50	4.1	2.9	4.2	3.0	4.5	3.2	4.7	3.4	4.7	3.4	-	-	-	3.5
55	4.6	3.3	4.8	3.4	5.1	3.6	5.4	3.8	5.4	3.8	5.4	3.8	5.6	4.0
60	5.2	3.7	5.4	3.8	5.7	4.1	6.0	4.3	6.0	4.3	6.1	4.3	6.3	4.4
65	5.8	4.1	6.0	4.3	6.4	4.5	6.7	4.7	6.7	4.7	6.7	4.8	6.9	4.9
70	6.4	4.5	6.6	4.7	7.0	5.0	7.3	5.2	7.3	5.2	7.4	5.3	7.6	5.4
75	7.0	5.0	7.3	5.2	7.7	5.5	8.0	5.7	8.0	5.7	8.1	5.8	8.3	5.9
80	7.7	5.4	8.0	5.6	8.4	6.0	8.8	6.2	8.8	6.2	8.8	6.3	9.1	6.4
85	8.4	5.9	8.6	6.1	9.1	6.5	9.5	6.7	9.5	6.7	9.6	6.8	9.8	7.0
90	9.0	6.4	9.3	6.6	9.8	7.0	10.2	7.2	10.2	7.2	10.3	7.3	10.6	7.5
95	9.7	6.9	10.0	7.1	10.6	7.5	11.0	7.8	11.0	7.8	11.1	7.9	11.4	8.1
100	10.4	7.4	10.8	7.6	11.3	8.0	11.8	8.3	11.8	8.3	11.9	8.4	12.2	8.6
110	11.9	8.4	12.3	8.7	12.9	9.1	13.4	9.5	13.4	9.5	13.5	9.6	13.8	9.8
120	13.4	9.5	13.8	9.8	14.5	10.3	15.0	10.6	15.0	10.6	15.2	10.7	15.5	11.0
130	15.0	10.6	15.5	11.0	16.2	11.5	16.7	11.9	16.7	11.9	16.9	12.0	17.3	12.2
140	16.7	11.8	1 <i>7</i> .1	12.1	17.9	12.7	18.5	13.1	18.5	13.1	18.7	13.2	19.1	13.5
150	18.3	13.0	18.9	13.4	19.7	13.9	20.3	14.4	20.3	14.4	20.5	14.5	20.9	14.8
160	20.1	14.2	20.6	14.6	21.5	15.2	22.2	15.7	22.2	15.7	22.4	15.9	22.8	16.2
170	21.9	15.5	22.4	15.9	23.4	16.6	24.1	1 <i>7</i> .1	24.1	1 <i>7</i> .1	24.3	17.2	24.8	17.6
180	23.7	16.8	24.3	17.2	25.3	1 <i>7</i> .9	26.1	18.5	26.1	18.5	26.3	18.6	26.8	19.0
190	25.6	18.1	26.2	18.6	27.3	19.3	28.1	19.9	28.1	19.9	28.3	20.0	28.8	20.4
200	27.5	19.5	28.2	19.9	29.3	20.7	30.1	21.3	30.1	21.3	30.4	21.5	30.9	21.9
250	37.6	26.7	38.5	27.3	39.9	28.3	41.0	29.0	41.0	29.0	41.3	29.2	42.0	29.8
300	48.8	34.5	49.8	35.3	51.5	36.5	52.8	37.4	52.8	37.4	53.2	37.7	54.0	38.3
350	60.7	43.0	61.9	43.9	64.0	45.3	65.5	46.4	65.5	46.4	65.9	46.7	66.9	47.4
400	73.4	52.0	74.9	53.0	77.2	54.7	79.0	55.9	79.0	55.9	79.4	56.3	80.6	57.1
450	86.9	61.6	88.5	62.7	91.2	64.6	93.2	66.0	93.2	66.0	93.7	66.4	95.0	67.3
500	101.1	71.6	102.9	72.9	105.9	75.0	108.1	76.6	108.1	76.6	108.7	77.0	110.2	78.0
550	115.9	82.1	117.9	83.5	121.2	85.9	123.7	87.6	123.7	87.6	124.3	88.1	126.0	89.2
600	131.3	93.0	133.5	94.6	137.2	97.2	139.9	99.1	139.9	99.1	140.6	99.6	142.4	100.9
650	-	-	-	-	153.8	108.9	156.7	111.0	156.7	111.0	157.5	111.6	159.4	112.9
700	-	-	-	-	170.9	121.0	174.1	123.3	174.1	123.3	174.9	123.9	177.0	125.4
750	-	-	-	-	-	-	192.0	136.0	192.0	136.0	193.0	136.7	195.2	138.3
800	-	-	-	-	-	-	-	-	-	-	211.5	149.8	213.9	151.5

Thread size	M	12	M	12	M	12	M	12	M	16	M	16	M	16
h _{ef} [mm]	9	5	10	00	1	10	12	25	9	0	10	05	12	25
Edge distance c ₁							٧	O Rd,c						
[mm]								:N]						
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
50	- Cruckeu	3.7	-	3.7	-	3.8	-	4.0	5.4	3.8	-	4.0	-	_
55	5.8	4.1	5.9	4.2	6.1	4.3	6.3	4.4	6.1	4.3	_	4.5	_	_
60	6.5	4.6	6.6	4.7	6.8	4.8	7.0	4.9	6.7	4.8	7.0	5.0	7.4	5.2
65	7.2	5.1	7.3	5.2	7.5	5.3	7.7	5.5	7.5	5.3	7.8	5.5	8.1	5.8
70	7.9	5.6	8.0	5.7	8.2	5.8	8.5	6.0	8.2	5.8	8.5	6.0	8.9	6.3
75	8.7	6.1	8.8	6.2	9.0	6.3	9.2	6.5	8.9	6.3	9.3	6.6	9.7	6.9
80	9.4	6.7	9.5	6.7	9.7	6.9	10.0	7.1	9.7	6.9	10.1	7.1	10.5	7.4
85	10.2	7.2	10.3	7.3	10.5	7.4	10.8	7.7	10.5	7.4	10.9	7.7	11.3	8.0
90	11.0	7.8	11.1	7.9	11.3	8.0	11.6	8.2	11.3	8.0	11.7	8.3	12.2	8.6
95	11.8	8.3	11.9	8.4	12.1	8.6	12.5	8.8	12.1	8.6	12.5	8.9	13.0	9.2
	12.6		12.7	9.0	13.0	9.2		9.4	13.0	9.2		9.5	13.9	9.9
110	14.3	8.9	14.4	10.2	14.7	10.4	13.3	10.7	14.7	10.4	13.4	10.7	15.7	11.1
	_													
120	16.0 17.8	11.3	16.2	11.4	16.4	11.6	16.9 18.7	11.9	16.4	11.6	16.9	12.0	17.6 19.5	12.5
	_													
140	19.6	13.9	19.8	14.0	20.1	14.3	20.6	14.6	20.1	14.3	20.7	14.7	21.5	15.2
150	21.5	15.3	21.7	15.4	22.1	15.6	22.6	16.0	22.1	15.6	22.7	16.1	23.5	16.6
160	23.5	16.6	23.7	16.8	24.1	17.0	24.6	17.4	24.1	17.0	24.7	17.5	25.5	18.1
170	25.5	18.0	25.7	18.2	26.1	18.5	26.7	18.9	26.1	18.5	26.8	19.0	27.7	19.6
180	27.5	19.5	27.7	19.6	28.2	19.9	28.8	20.4	28.2	19.9	28.9	20.5	29.8	21.1
190	29.6	21.0	29.8	21.1	30.3	21.4	30.9	21.9	30.3	21.4	31.1	22.0	32.0	22.7
200	31.7	22.5	32.0	22.6	32.4	23.0	33.1	23.5	32.4	23.0	33.3	23.6	34.3	24.3
250	43.0	30.4	43.3	30.7	43.9	31.1	44.7	31.7	43.9	31.1	44.9	31.8	46.2	32.7
300	55.2	39.1	55.6	39.4	56.3	39.9	57.3	40.6	56.3	39.9	57.5	40.7	59.0	41.8
350	68.3	48.4	68.7	48.7	69.5	49.3	70.7	50.1	69.6	49.3	71.0	50.3	72.7	51.5
400	82.2	58.2	82.7	58.6	83.6	59.2	84.9	60.2	83.6	59.2	85.3	60.4	87.2	61.8
450	96.8	68.6	97.4	69.0	98.4	69.7	99.9	70.8	98.5	69.7	100.3	71.0	102.5	72.6
500	112.1	79.4	112.8	79.9	113.9	80.7	115.6	81.9	114.0	80.7	116.0	82.2	118.5	83.9
550	128.2	90.8	128.8	91.3	130.1	92.2	132.0	93.5	130.2	92.2	132.4	93.8	135.2	95.7
600	144.8	102.6	145.5	103.1	147.0	104.1	149.0	105.5	147.0	104.1	149.5	105.9	152.5	108.0
650	162.0	114.8	162.8	115.4	164.4	116.5	166.6	118.0	164.5	116.5	167.1	118.4	170.4	120.7
700	179.9	127.4	180.7	128.0	182.4	129.2	184.8	130.9	182.5	129.3	185.4	131.3	188.9	133.8
750	198.3	140.4	199.2	141.1	201.0	142.4	203.5	144.2	201.1	142.4	204.2	144.6	207.9	147.3
800	217.2	153.8	218.2	154.6	220.1	155.9	222.8	157.8	220.2	156.0	223.6	158.3	227.5	161.2
850	236.6	167.6	237.7	168.4	239.8	169.8	242.6	171.9	239.9	169.9	243.4	172.4	247.7	175.4
900	256.6	181.8	257.7	182.6	259.9	184.1	263.0	186.3	260.1	184.2	263.8	186.9	268.3	190.1
950	277.0	196.2	278.3	197.1	280.6	198.7	283.8	201.0	280.7	198.8	284.7	201.7	289.5	205.0
1000	-	-	299.3	212.0	301.7	213.7	305.1	216.1	301.9	213.8	306.1	216.8	311.1	220.4
1100	-	-	-	-	345.3	244.6	349.1	247.3	-	-	-	-	355.8	252.0
1200	-	-	-		-	-	394.9	279.7	-	-	-	-	402.2	284.9
1300	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1400	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1500	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1600	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1800	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1900	-	-	-		-			-	-	-	-		-	-
2000	-	-	-		-		-				-	_		-
2125	-	-	-		-	-	-	-	-	-	-	_	-	-
2250	-										-	-		-

Thread																
size	M	16	M	16	M	20	M	20	M	20	M:	24	M	24	M:	24
h _{ef} [mm]	14	45	10	50	1	15	1.7	70	19	90	17	70	20	00	22	25
Edge distance								V) Rd,c							
[mm]								ΓL	N]							
[]	non-	cracked	non-	cracked	non-	cracked	non-	cracked	non-	cracked	non-	cracked	non-	cracked	non-	cracked
	cracked	Cruckeu	cracked	Clucked	cracked	Ciuckeu	cracked	Cruckeu	cracked	Ciuckeu	cracked	Clucked	cracked	Cruckeu	cracked	CIUCKEU
60	7.7	5.5	7.9	5.6	-	-	-	-	-	-	-	-	-	-	-	-
65	8.5	6.0	8.7	6.2	-	-	-	-	-	-	-	-	-	-	-	-
70	9.3	6.6	9.6	6.8	-	-	-	-	-	-	-		-	-	-	-
75	10.1	7.2	10.4	7.4	-	-	-	-	-	-	-	-	-	-	-	-
80	10.9	7.7	11.2	8.0	10.7	7.6	12.2	8.6	12.6	8.9	12.4	8.8	-	9.3	-	9.7
85	11.8	8.3	12.1	8.6	11.5	8.2	13.1	9.3	13.6	9.6	13.3	9.4	-	9.9	-	10.3
90	12.6	9.0	13.0	9.2	12.4	8.8	14.0	9.9	14.5	10.3	14.3	10.1	-	10.6	-	11.1
95	13.5	9.6	13.9	9.8	13.3	9.4	15.0	10.6	15.5	11.0	15.2	10.8	-	11.3	-	11.8
100	14.4	10.2	14.8	10.5	14.2	10.0	15.9	11.3	16.5	11.7	16.2	11.5	-	12.0	-	12.5
110	16.3	11.5	16.7	11.8	16.0	11.3	17.9	12.7	18.5	13.1	18.2	12.9	19.1	13.5	19.7	14.0
120	18.2	12.9	18.6	13.2	17.8	12.6	19.9	14.1	20.5	14.5	20.2	14.3	21.2	15.0	21.9	15.5
130	20.1	14.3	20.6	14.6	19.8	14.0	22.0	15.6	22.6	16.0	22.3	15.8	23.3	16.5	24.1	17.1
140	22.1	15.7	22.6	16.0	21.8	15.4	24.1	17.1	24.8	17.6	24.5	17.3	25.5	18.1	26.4	18.7
150	24.2	17.1	24.7	17.5	23.8	16.9	26.3	18.6	27.0	19.2	26.7	18.9	27.8	19.7	28.7	20.3
160 170	26.3	18.6	26.8	19.0	25.9	18.3	28.6 30.8	20.2	29.3 31.6	20.8	29.0 31.3	20.5	30.1 32.5	21.3	31.1	22.0
180	30.7	20.2	31.3	20.6	30.2	19.9	33.2	21.8	34.0	24.1	33.6	23.8	34.9	23.0	35.9	25.5
190	32.9	23.3	33.5	23.8	32.4	23.0	35.5	25.2	36.4	25.8	36.0	25.5	37.4	26.5	38.4	27.2
200	35.2	24.9	35.9	25.4	34.7	24.6	38.0	26.9	38.9	27.5	38.5	27.2	39.9	28.2	41.0	29.0
250	47.3	33.5	48.1	34.1	46.7	33.1	50.7	35.9	51.8	36.7	51.3	36.3	53.0	37.6	54.4	38.5
300	60.4	42.8	61.3	43.4	59.7	42.3	64.4	45.6	65.7	46.5	65.1	46.1	67.1	47.6	68.7	48.7
350	74.3	52.6	75.4	53.4	73.5	52.0	79.0	55.9	80.5	57.0	79.8	56.5	82.1	58.2	84.0	59.5
400	89.0	63.1	90.3	64.0	88.1	62.4	94.4	66.8	96.1	68.1	95.3	67.5	97.9	69.4	100.0	70.8
450	104.5	74.0	105.9	75.0	103.5	73.3	110.5	78.3	112.4	79.6	111.6	79.0	114.5	81.1	116.8	82.7
500	120.7	85.5	122.3	86.6	119.6	84.7	127.4	90.2	129.5	91.7	128.6	91.1	131.8	93.4	134.3	95.2
550	137.6	97.5	139.4	98.7	136.4	96.6	144.9	102.7	147.3	104.3	146.2	103.6	149.8	106.1	152.6	108.1
600	155.2	109.9	157.0	111.2	153.8	109.0	163.1	115.5	165.7	117.3	164.5	116.5	168.4	119.3	171.4	121.4
650	173.3	122.7	175.3	124.2	171.9	121.7	181.9	128.9	184.7	130.8	183.5	129.9	187.7	132.9	190.9	135.2
700	192.0	136.0	194.2	137.6	190.5	134.9	201.3	142.6	204.3	144.7	203.0	143.8	207.5	147.0	211.0	149.4
750	211.3	149.7	213.7	151.3	209.7	148.5	221.3	156.8	224.5	159.0	223.1	158.0	227.9	161.4	231.6	164.1
800	231.2	163.7	233.7	165.5	229.4	162.5	241.8	1 <i>7</i> 1.3	245.2	173.7	243.7	172.6	248.9	176.3	252.8	1 <i>7</i> 9.1
850	251.5	178.2	254.2	180.1	249.7	176.8	262.9	186.2	266.5	188.8	264.9	187.6	270.4	191.5	274.6	194.5
900	272.4	193.0	275.2	195.0	270.4	191.6	284.5	201.5	288.3	204.2	286.6	203.0	292.4	207.1	296.8	210.3
950	293.8	208.1	296.8	210.2	291.7	206.6	306.5	217.1	310.6	220.0	308.8	218.7	314.9	223.1	319.6	226.4
1000	315.7	223.6	318.8	225.8	313.5	222.0	329.1	233.1	333.3	236.1	331.5	234.8	337.9	239.4	342.9	242.9
1100	360.8	255.6	364.3	258.0	358.4	253.9	375.6	266.1	380.3	269.4	378.3	267.9	385.4	273.0	390.8	276.8
1200	407.7	288.8	411.5	291.5	405.1	287.0	424.0	300.3	429.1	303.9	426.9	302.4	434.6	307.8	440.5	312.0
1300	456.4	323.3	460.5	326.2	453.5	321.3	474.1	335.8	479.6	339.7	477.2	338.0	485.6	344.0	492.0	348.5
1400	506.6	358.9	511.1	362.1	-	-	525.8	372.4	531.8	376.7	529.2	374.9	538.3	381.3	545.2	386.2
1500	-	-	563.3	399.0	-	-	579.1	410.2	585.5	414.8	582.8	412.8	592.5	419.7	599.9	425.0
1600	-	-	617.1	437.1	-	-	634.0	449.1	640.9	453.9	638.0	451.9	648.3	459.2	656.2	464.8
1700	-	-	-	-	-	-	690.4	489.0	697.7	494.2	694.6	492.0	705.6	499.8	714.1	505.8
1800	-	-	-	-	-	-	-	-	755.9	535.4	-	-	764.4	541.4	773.3	547.8
1900	-	-	-	-	-	-	-	-	815.6	577.7	-	-	824.5	584.0	834.0	590.7
2000	-	-	-	-	-	-	-	-	-	-	-	-	886.1	627.6	896.0	634.7
2125	-	-	-	-	-	-	-	-	-	-	-	-	-	-	975.5	691.0
2250	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1056.9	748.7

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

S/	/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f,	v	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of edge distance

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

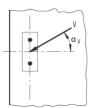
$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1.00	1.10	1.20	1.30	1.40	1.50
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c_1 \le c_2$

²⁾ strength at 28 days of 150 mm cubes


d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Mechanical characteristics

Anchor type: WIT-VIZ, M8 - M24

		W8	W8	M10	M10	M12	M12	M12	M12	M12	M12	M12	91W	M16	M16	91W	M20	M20	M20	M24	M24	M24
[mm]	_	40	50	09	75	7.5	70	80	9.5	100	110	125	06	105	125	145	115	170	190	170	200	225
	-	ř)	3))	>	2)	2) - -	2	2)	2))	2	-) :	2	51
	[mm2]	ο α	22.0	32.2	32.2	73.0	42.2	7 07	7 0 7	0 22	77.0	0 2 2	1112	120 B	0 1 7 1	0 171	1420	2 7 S C	227 g	780 4	7086 7086	7 0 0 0
	, =		7.77	7: 70	4:40	5	7:70	į.	į.	?	>.				_		_		5.	_		0.00
<u>-</u>	[mm ₃]	11.6	15.5	25.7	25.7	39.8	69.2	81.5	81.5	95.3	95.3	95.3	165.4	187.2	236.2	236.2	293.1	517.2	517.2	662.8	662.8	662.8
Z	N/mm ²]	640	940	940	940	940	940	940	940	940	940	940	940	940	940	940	400	940	940	940	940	940
\leq	N/mm ²]	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	260	800	800	800	800	800
Stressed cross section of thre	eaded part	art																				
	[mm ²]	36.6	36.6	58.0	58.0	84.3	84.3	84.3	84.3	84.3	84.3	84.3	157.0	157.0	157.0	157.0 245.0		245.0 245.0		352.0	352.0 352.0	352.0
_	[mm ₃]	31.2	31.2	62.3	62.3	109.2	109.2	109.2	109.2	109.2	109.2	109.2	277.5	277.5	277.5	277.5	540.9	540.9	540.9	931.5	931.5	931.5
\leq	$[N/mm^2]$	640	640	940	940	640	940	940	940	640	640	940	940	940	940	940	400	940	640	940	940	940
$ \leq $	$[N/mm^2]$	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	260	800	800	800	800	800
M° Rd,s	[MZ]	24	24	48	48	84	84	84	84	84	84	84	213	213	213	213	280	415	415	717	717	717

Material specifications

			Steel, zinc plated	þe
Š	Part	galvanized	hot-dip galvanized ≥ 40 µm	sherardized≥40 µm
-	Anchor rod	Steel acc. to EN 10087:1998, galva-	Steel acc. to EN 10087:1998, hot-dip	Steel acc. to EN 10087:1998,
		nized and coated	galvanized and coated	sherardized and coated
2a	Washer	- - -		
2 b	Washer with bore	Steel, zinc plated	Steel, zinc plated	Steel, zinc piated
		Property class 8 acc. to	Property class 8 acc. to	Property class 8 acc. to
ო	Hexagon nut	EN ISO 898-2:2012-08,	EN ISO 898-2:2012-08,	EN ISO 898-2:2012-08,
		galvanized	hot-dip galvanized	sherardized or hot-dip galvanized
4	Mortar cartridge	ij	Vinyl Ester Resin, styrene free, mixing ratio 1:10	ixing ratio 1:10

Chemical resistance

Chemical Agent	Concentration	Resistant	Not Resistant	
Acetic acid	>40		•	
Acetic acid	10	•		
Acetone	5		•	
Ammonia, aqueous solution	Conc.		•	
Aniline			•	
Calcium hydroxide			•	
Carbon tetrachloride		•		
Diesel fuel		•		
Boric Acid, aqueous solution	all	•		
Glycol		•		
Formic acid	30	•		
Calcium hydroxide, suspended in water	all		•	
Caustic soda solution	all		•	
Citric acid	50	•		
Hydrochloric acid	all		•	
Lactic acid	<80	•		
Sea water		•		
Formaldehyde, aqueous solution	20		•	
Fuel Oil		•		
Glycol (Ethylene glycol)		•		
Isopropyl alcohol		•		
Linseed oil		•		
Magnesium chloride, aqueous solution	all	•		
Methanol			•	
Nitric acid	30		•	
Oleic acid		•		
Phenol, aqueous solution	all		•	
Phosphoric acid	<80	•		
Potassium carbonate, aqueous solution	all		•	
Potassium chlorite, aqueous solution	all	•		
Potassium nitrate, aqueous solution	all	•		
Sodium Chloride, aqueous solution	all	•		
Sodium phosphate, aqueous solution	all	•		
Sodium silicate	all		•	
Sulfuric acid	<50	•		
Tartaric acid		•		
Toluene			•	
Trichloroethylene			•	
Ethanol	96		•	

Results shown in the table are applicable to brief periods of chemical contact with full cured adhesive (e.g. temporary contact with adhesive during a spill).

Properties of adhesive

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range l	-40 °C to +80 °C	+50 °C	+80 °C
Temperature range II	-40 °C to +120 °C	+72 °C	+120 °C
Property		Testing method	Results
Stability			
UV-resistance (sunlight)			not resistant
Temperature resistance			120 °C
Water resistancy			resistant
Cleaning agents			1% tenside solution: no effects
Physical properties			
Flexural properties	Flexural strength	DIN EN 196-1	after 24 hours: 19.2 N/mm²
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours: ≥ 96.1 N/mm²
Dynamic modulus of elasticity		DIN EN 12504-4	after 24 hours: 13.79 GPa
Thermal conductivity	Modified trans	sient plane source method	0.88 / 0.82 W/mK
Specific contact resistance		IEC 93	4.8 x 109 Ωcm
Density		DIN 53479	$1.74 \pm 0.1 \text{ g/cm}^3$
Workability features			
Watertightness / impermeability		DIN EN 12390-8	after 72 hours at 5bar: 0mm
Open time (10-20°C)			6 min
Curing time (10-20°C)			80 min
Shelf life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

Working and curing times WIT-VIZ

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
-5°C	90 min	6 h
-4°C to -1°C	45 min	6 h
0°C to 4°C	20 min	3 h
5°C to 9°C	12 min	2 h
10°C to 19°C	6 min	80 min
20°C to 29°C	4 min	45 min
30°C to 34°C	2 min	25 min
35°C to 39°C	80 s	20 min
40°C	80 s	15 min

¹⁾ for wet base material the curing time must be doubled

Working and curing times WIT-EXPRESS

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
-5°C	40 min	4 h
-4°C to -1°C	20 min	4 h
-0°C to 4°C	10 min	2 h
5°C to 9°C	6 min	1 h
10°C to 19°C	3 min	40 min
20°C to 29°C	1 min	20 min
+30°C	1 min	10 min
35°C to 39°C	80 s	20 min
40°C	80 s	15 min

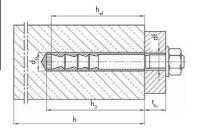
¹⁾ for wet base material the curing time must be doubled

Installation parameters

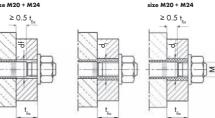
Anchor type: WIT-VIZ, M8 - M12

Anchor size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80
Nominal drill hole diameter	d _o	[mm]	10	50	12	12	12	14	14
Drill-hole depth	h₀≥	[mm]	42	10	65	80	80	75	85
Diameter of cleaning brush	D≥	[mm]	10,8	55	13	13	13	15	15
Diameter of cleaning brush	T _{inst} ≤	[Nm]	10	10,8	15	15	25	25	25
Diameter of clearance in hole	Pre-positioned $d_f \le$	[mm]	9	10	12	12	14	14	14
in the fixture	Push-through d _f ≤	[mm]	-	9	14	14	14 ¹⁾ / 16	16	16
Minimum thickness of member	h _{min}	[mm]	80	-	100	110 / 100 ²⁾	110	110	110
Non-cracked Concrete									
Minimum spacing	S _{min}	[mm]	40	40	50	50	50	55	55
Minimum edge distance	C _{min}	[mm]	40	40	50	50	50	55	55
Cracked concrete									
Minimum spacing	S _{min}	[mm]	40	40	40	40	50	55	40
Minimum edge distance	C _{min}	[mm]	40	40	40	40	50	55	50

Anchor size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef} ≥	[mm]	95	100	110	125	90	105	125
Nominal drill hole diameter	d _o	[mm]	14	14	14	14	18	18	18
Drill-hole depth	h₀≥	[mm]	100	105	115	130	98	113	133
Diameter of cleaning brush	D≥	[mm]	15	15	15	15	19	19	19
Diameter of cleaning brush	T _{inst} ≤	[Nm]	25	30	30	30	50	50	50
Diameter of clearance in hole	Pre-positioned $d_f \le$	[mm]	14	14	14	14	18	18	18
in the fixture	Push-through d _f ≤	[mm]	16	16	16	16	20	20	20
Minimum thickness of member	h _{min}	[mm]	130 / 125 ²⁾	130	140	160	130	150	170 / 160 ²⁾
Non-cracked Concrete									
Minimum spacing	S _{min}	[mm]	55	80 ³⁾	81 ³⁾	82 3)	50	60	60
Minimum edge distance	C _{min}	[mm]	55	55 ²⁾	55 ²⁾	55 ²⁾	50	60	60
Cracked concrete									
Minimum spacing	S _{min}	[mm]	40	50	50	50	50	50	60
Minimum edge distance	C _{min}	[mm]	50	50	50	50	50	50	60



Anchor type: WIT-VIZ, M16 - M24


Anchor size			M16	M16	M20	M20	M20	M20	M24	M24
Effective anchorage depth	h _{ef} ≥	[mm]	145	160	115	170	190	1 <i>7</i> 0	200	225
Nominal drill hole diameter	d _o	[mm]	18	18	22	24	24	26	26	26
Drill-hole depth	h _o ≥	[mm]	153	168	120	180	200	185	215	240
Diameter of cleaning brush	D≥	[mm]	19	19	23	25	25	27	27	27
Diameter of cleaning brush	T _{inst} ≤	[Nm]	50	50	80	80	80	100	120	120
Diameter of clearance in	Pre-positioned d _f ≤	[mm]	18	18	22	24 (22)	24 (22)	26	26	26
hole in the fixture	Push-through d _f ≤	[mm]	20	20	24	26	26	28	28	28
Minimum thickness of member	h _{min}	[mm]	190 / 180 ²⁾	205 / 200 ²⁾	160	230 / 220 ²⁾	250 / 240 ²⁾	230 / 220 ²⁾	270 / 260 ²⁾	300 / 290 ²⁾
Non-cracked Concrete										
Minimum spacing	S _{min}	[mm]	60	60	80	80	80	80	105	105
Minimum edge distance	C _{min}	[mm]	60	60	80	80	80	105	105	105
Cracked concrete										
Minimum spacing	S _{min}	[mm]	60	60	80	80	80	80	80	80
Minimum edge distance	C _{min}	[mm]	60	60	80	80	80	80	80	80

¹⁾ Check installation instructions

Pre-positioned installation

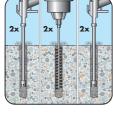
In-place installation size M20 + M24

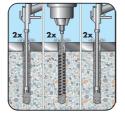
²⁾ The remote face of the concrete member shall be inspected to ensure there has been no break-through by drilling. In case of break-through, the ground of the drill hole shall be closed with high strength mortar. The full bonded length hef shall be achieved and any potential loss of injection mortar shall be compensated

 $^{^{3)}}$ For an edge distance c \geq 80 mm a minimum spacing s $_{_{min}}$ = 55 mm is applicable

Installation instructions

A) Bore hole drilling			
Prepositioned	Push-through	la.	Hammer (HD) or compressed air drilling (CD)
← ₩			Drill a hole into the base material to the size and embedment depth required by the selected anchor rod. Proceed with Step B1.
Prepositioned	Push-through	1b.	Hollow drill bit system (HDB)
			Drill hole perpendicular to concrete surface by using a vacuum drill bit. The nominal underpressure of the vacuum cleaner must be at least 230 mbar / 23kPa. Make sure the dust extraction is working properly throughout the whole drilling process. Additional cleaning is not necessary. Proceed with Step C.
Prepositioned	Push-through	1c.	Diamond drilling (DD)
			Use diamond drill with diamond drill bit and depth gauge. Drill perpendicular to concrete surface. Remove drill core at least up to the nominal hole depth and check drill hole depth. Proceed with Step B2.
Attention! Standing water	in the bore hole must be rer	noved	before cleaning.
31) Bore hole cleaning			
MAC: Cleaning for rod threaded	diameters shown below		
Prepositioned M8 – M16	Push-through M10 - M16	2a.	Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump a minimum of two times.
2x 2x 2x	2x 2		Check diameter of cleaning brush. If the brush can be pushed into the drill hole without any resistance, it must be replaced. Check brush into the drill machine. Turn on the drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine.
			Finally blow the hole clean again with a hand pump a minimum of two times. For prepositioned installation, the extension tube with reduced diameter must be added to the blow-out pump for diameter M8.

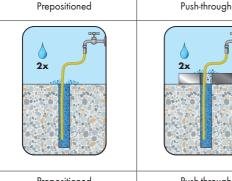

B1) Bore hole cleaning


CAC: Cleaning for dry, wet and water-filled bore holes for threaded diameters shown below

Prepositioned

M20 - M24

Push-through M20 - M24 2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust

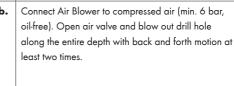

2b. Check diameter of cleaning brush. If the brush can be pushed into the drill hole without any resistance, it must be replaced. Check brush into the drill machine. Turn on the drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine.

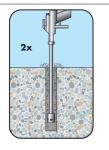
2c. Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust.

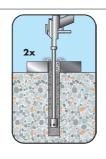
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

B2) Bore hole cleaning

SPCAC: Cleaning for dry, wet and water-filled bore holes for all diameters in non-cracked concrete

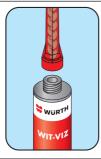



Flush drill hole with water, starting from the bottom, until clear water gets out of the drill hole.



Push-through

2b.

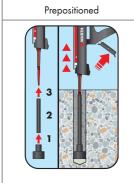


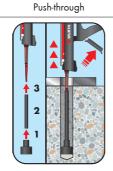
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

C) Preparation of bar and cartridge

Check expiration date on cartridge. Never use when expired. Remove cap from cartridge. Screw Mixer Nozzle on cartridge. When using a new cartridge, always use a new Mixer Nozzle. Never use cartridge without Mixer Nozzle and never use Mixer Nozzle without helix inside.

3a.


3b.


4.

Insert cartridge in Dispenser. Before injecting discard mortar (at least 2 full strokes or a line of 10 cm) until it shows a consistent grey colour. Never use this mortar.

D) Filling the bore hole

Prior to injection, check if Mixer Nozzle reaches the bottom of the drill hole. If it does not reach the bottom, plug Mixer Extension onto Mixer Nozzle in order to fill the drill hole properly. Fill hole with a sufficient quantity of injection mortar. Start from the bottom of the drill hole and work out to avoid trapping air pockets.

E) Setting the anchor

5a. Insert the anchor rod WIT-VIZ-A by hand, rotating slightly up to the full embedment depth as marked on the anchor

In case of prepositioned installation, the anchor rod is properly set when excess mortar seeps from the hole. In case of push-through installation, the annular gap in the clearance hole in the fixture has to be filled completely by excess mortar after the installation.

If the hole is not completely filled, pull out the anchor rod, let the mortar cure, drill out hole and repeat entire cleaning process.

Prepositioned	Push-through	5b.	Follow minimum curing times. During curing time, the
45 Min. +20°C	45 Min. +20°C		anchor rod must not be moved or loaded.
Prepositioned	Push-through	5c.	Remove excess mortar.
Prepositioned	Push-through	5d.	For both installation types, the fixture can be moun-
Tinat	Tinat		ted after curing time. Apply installation torque Tinst by using a torque wrench. In case of push through installation, the annular gap between the anchor rod and attachment may be optionally filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on static mixer. The annular gap is completely filled when excess mortar seeps out.

Filling Quantity

Anchor type: WIT-VIZ, M8 - M24

Thread size			M8	M10	M12	M16	M20	M20	M24
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	24	26
Drill depth	h _o / h ₁	[mm]							
Filling volume per 10mm embedment depth		[ml]	1.05	1.20	1.20	1.50	2.29	2.30	2.30

Assumed waste of 15 % included.

W-VIZ/A4

W-VIZ-A/A4

Stainless steel - A4 (AISI 316): M8 - M24

W-VIZ-A/HCR

High corrosion resistant steel HCR: M8 - M24

WIT-VIZ

WIT-VIZ EXPRESS

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Type of installation								
Pre-positioned	In-place	Stand-off						
✓	✓	✓						

Installation condition	1	
Dry concrete	Wet concrete	Flooded drill hole
√	✓	✓
Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	✓	✓

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	ETAG 001-T5	ETA-04/0095, 11.05.2017
Fire resistance	MFPA Leipzig GmbH	TR 020	GS 3.2/18-075-1
LEED	eurofins		14.06.13
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 11048 <i>75</i> A	07.01.14

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

- Bonding expansion system WIT-VIZ consists of an anchor rod WIT-VIZ-A/A4 or WIT-VIZ-A/HCR and injection mortar WIT-VIZ or WIT-EXPRESS
- Temperature range I: -40°C to +80°C (max. long term/short term base material temperature +50°C/+80°C)
- Dry or wet conditions of drill hole, hammer and diamond core drilling
- Installation temperature range +5°C to +40°C

Mean ultimate resistance

Anchor type: WIT-VIZ, M8 - M12

Thread size				M8	M8	M10	M10	M12	M12	M12			
Effective anchorage depth		h _{ef}	[mm]	40	50	60	75	75	<i>7</i> 0	80			
Non-cracked concrete													
Tension	C20/25	N _{Ru,m}	[kN]	15.0	22.0	30.9	30.9	38.4	40.6	61.6			
Shear	C20/25	V _{Ru,m}	[kN]	1 <i>7</i> .6	1 <i>7</i> .6	27.8	27.8	40.5	40.5	40.5			
Cracked concrete													
Tension	C20/25	N _{Ru,m}	[kN]	11.2	1 <i>7</i> .8	25.5	26.9	31.8	37.5	44.0			
Shear	C20/25	V _{Ru,m}	[kN]	1 <i>7</i> .6	17.6	27.8	27.8	40.5	40.5	40.5			

Anchor type: WIT-VIZ, M12 - M16

Thread size				M12	M12	M12	M12	M16	M16	M16			
Effective anchorage depth		h _{ef}	[mm]	95	100	110	125	90	105	125			
Non-cracked concrete													
Tension	C20/25	N _{Ru,m}	[kN]	61.6	65.9	65.9	65.9	62.2	80.9	100.9			
Shear	C20/25	V _{Ru,m}	[kN]	40.5	40.5	40.5	40.5	75.4	75.4	75.4			
Cracked concrete													
Tension	C20/25	N _{Ru,m}	[kN]	47.1	61.3	61.3	61.3	44.7	68.3	99.2			
Shear	C20/25	V _{Ru,m}	[kN]	40.5	40.5	40.5	40.5	75.4	75.4	75.4			

Thread size				M16	M16	M20	M20	M20	M24	M24	M24			
Effective anchorage depth		h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	170	200	225			
Non-cracked concrete														
Tension	C20/25	N _{Ru,m}	[kN]	100.9	115.9	107.9	1 <i>7</i> 1.5	1 <i>7</i> 1.5	201.0	237.6	237.6			
Shear	C20/25	V _{Ru,m}	[kN]	75.4	75.4	102.9	102.9	102.9	147.8	147.8	147.8			
Cracked concrete														
Tension	C20/25	N _{Ru,m}	[kN]	99.2	104.7	94.3	136.6	136.6	133.5	183.4	183.4			
Shear	C20/25	V _{Ru.m}	[kN]	75.4	75.4	102.9	102.9	102.9	147.8	147.8	147.8			

W-VIZ/A4

Characterstic loads

Anchor type: WIT-VIZ, M8 - M12

Thread size				M8	M8	M10	M10	M12	M12	M12			
Effective anchorage depth		h _{ef}	[mm]	40	50	60	75	75	70	80			
Non-cracked concrete													
Tension	C20/25	NI	[kN]	9.0	17.4	22.9	25.0	32.0	28.8	35.2			
	C50/60	N_{Rk}		14.2	18.0	25.0	25.0	35.0	45.6	54.0			
Shear	≥ C20/25	V_{Rk}	[kN]	14.0	14.0	21.0	21.0	34.0	34.0	34.0			
Cracked concrete													
Tension	C20/25	NI	[LVI]	8.7	12.2	16.0	22.4	22.4	20.2	24.6			
	C50/60	N_{Rk}	[kN]	13.8	18.0	25.0	25.0	35.0	31.9	39.0			
Shear	≥ C20/25	V_{Rk}	[kN]	14.0	14.0	21.0	21.0	34.0	34.0	34.0			

Anchor type: WIT-VIZ, M12 - M16

,														
Thread size				M12	M12	M12	M12	M16	M16	M16				
Effective anchorage depth		h _{ef}	[mm]	95	100	110	125	90	105	125				
Non-cracked concrete														
Tension	C20/25		[kN]	40.0	49.2	50.0	50.0	42.0	52.9	68.8				
	C50/60	N_{Rk}		54.0	57.0	57.0	<i>57</i> .0	66.4	83.7	108.7				
Shear	≥ C20/25	V_{Rk}	[kN]	34.0	34.0	34.0	34.0	63.0	63.0	63.0				
Cracked concrete														
Tension	C20/25		II N II	31.9	34.4	39.7	48.1	29.4	37.1	48.1				
	C50/60	IN _{Rk}	N _{Rk} [kN]	50.4	54.4	57.0	<i>57</i> .0	46.5	58.6	76.1				
Shear	≥ C20/25	V _{Rk}	[kN]	34.0	34.0	34.0	34.0	58.8	63.0	63.0				

Anchor type: WII-VIZ, MIO-M24														
Thread size				M16	M16	M20	M20	M20	M24	M24	M24			
Effective anchorage depth		h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225			
Non-cracked concrete	Non-cracked concrete													
Tension	C20/25	NI	[kN]	75.0	90.0	60.7	109.0	128.8	109.0	139.1	166.0			
	C50/60	N _{Rk}	[KIN]	111.0	97.0	95.9	172.4	188.0	172.4	220.0	222.0			
Shear	≥ C20/25	V _{Rk}	[kN]	63.0	63.0	70.0	98.0	98.0	141.0	141.0	141.0			
Cracked concrete														
Tension	C20/25	N.	[LVI]	60.1	69.7	42.5	76.3	90.2	76.3	97.4	116.2			
	C50/60	N _{Rk}	[kN]	95.1	97.0	67.1	120. <i>7</i>	142.6	120. <i>7</i>	154.0	183.8			
Shear	≥ C20/25	V _{Rk}	[kN]	63.0	63.0	70.0	98.0	98.0	141.0	141.0	141.0			

Design loads

Anchor type: WIT-VIZ, M8 - M12

Thread size				M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth		h_{ef}	[mm]	40	50	60	75	75	70	80
Non-cracked concrete										
Tension	C20/25	NI	[LVI]	6.0	11.6	15.2	16.7	21.3	19.2	23.5
	C50/60	N _{Rd}	[kN]	9.5	12.0	16.7	16.7	23.3	30.4	36.0
Shear	≥ C20/25	V _{Rd}	[kN]	11.2	11.2	16.8	16.8	27.2	27.2	27.2
Cracked concrete										
Tension	C20/25	NI	[LVI]	5.8	8.1	10.7	14.9	14.9	13.4	16.4
	C50/60	N_{Rd}	[kN]	9.2	12.0	16.7	16.7	23.3	21.3	26.0
Shear	≥ C20/25	V _{Rd}	[kN]	11.2	11.2	16.8	16.8	27.2	26.9	27.2

Anchor type: WIT-VIZ, M12 - M16

Thread size				M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth		$h_{\rm ef}$	[mm]	95	100	110	125	90	105	125
Non-cracked concrete										
Tension	C20/25		[[]]	26.7	32.8	33.3	33.3	28.0	35.3	45.8
	C50/60	N_{Rd}	[kN]	36.0	38.0	38.0	38.0	44.3	55.8	72.5
Shear	≥ C20/25	V _{Rd}	[kN]	27.2	27.2	27.2	27.2	50.4	50.4	50.4
Cracked concrete										
Tension	C20/25	NI	[LVI]	21.3	23.0	26.5	32.1	19.6	24.7	32.1
	C50/60	N _{Rd}	[kN]	33.6	36.3	38.0	38.0	31.0	39.1	50.7
Shear	≥ C20/25	V _{Rd}	[kN]	27.2	27.2	27.2	27.2	39.2	49.4	50.4

Thread size				M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth		h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Non-cracked concrete											
Tension	C20/25	N	[LKI]	50.0	60.0	40.4	72.7	85.9	72.7	92.8	110.7
	C50/60	N _{Rd}	[kN]	74.0	64.7	<i>57</i> .1	114.9	125.3	114.9	146.7	148.0
Shear	≥ C20/25	V _{Rd}	[kN]	50.4	50.4	50.0	78.4	78.4	112.8	112.8	112.8
Cracked concrete											
Tension	C20/25	NI	[kN]	40.1	46.5	28.3	50.9	60.1	50.9	64.9	77.5
	C50/60	N _{Rd}	[KIN]	63.4	64.7	44.8	80.5	95.1	80.5	102.7	122.5
Shear	≥ C20/25	V _{Rd}	[kN]	50.4	50.4	50.0	78.4	78.4	101.8	112.8	112.8

Recommended/allowable loads 1)

Anchor type: WIT-VIZ, M8 - M12

Thread size				M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth		h _{ef}	[mm]	40	50	60	75	75	70	80
Non-cracked concrete										
Tension	C20/25		[] []	4.3	8.3	10.9	11.9	15.2	13.7	16.8
	C50/60	N _{rec}	[kN]	6.8	8.6	11.9	11.9	16.7	21.7	25.7
Shear	≥ C20/25	V	[kN]	8.0	8.0	12.0	12.0	19.4	19.4	19.4
Cracked concrete										
Tension	C20/25	NI	[kN]	4.1	5.8	7.6	10.7	10.7	9.6	11. <i>7</i>
	C50/60	N _{rec}	[KIN]	6.6	8.6	11.9	11.9	16.7	15.2	18.6
Shear	≥ C20/25	V	[kN]	8.0	8.0	12.0	12.0	19.4	19.2	19.4

Material safety factor γ_M and safety factor for action $\gamma_L = 1.4$ are included. The material safety factor depends on the failure mode.

Anchor type: WIT-VIZ, M12 - M16

Thread size				M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth		$h_{\rm ef}$	[mm]	95	100	110	125	90	105	125
Non-cracked concrete										
Tension	C20/25	Z	[[.k.]]	19.0	23.4	23.8	23.8	20.0	25.2	32.7
	C50/60	rec	[kN]	25.7	27.1	27.1	27.1	31.6	39.9	51.8
Shear	≥ C20/25	V _{rec}	[kN]	19.4	19.4	19.4	19.4	36.0	36.0	36.0
Cracked concrete										
Tension	C20/25	Z	[[.k.]]	15.2	16.4	18.9	22.9	14.0	1 <i>7</i> .6	22.9
	C50/60	rec	[kN]	24.0	25.9	27.1	27.1	22.1	27.9	36.2
Shear	≥ C20/25	V _{rec}	[kN]	19.4	19.4	19.4	19.4	28.0	35.3	36.0

Material safety factor γ_M and safety factor for action $\gamma_L = 1.4$ are included. The material safety factor depends on the failure mode.

	_										
Thread size				M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth		h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Non-cracked concrete											
Tension	C20/25	N.	[LVI]	35.7	42.9	28.9	51.9	61.4	51.9	66.3	79.1
	C50/60	N _{rec}	[kN]	52.9	46.2	40.8	82.1	89.5	82.1	104.8	105.7
Shear	≥ C20/25	V	[kN]	36.0	36.0	35. <i>7</i>	56.0	56.0	80.6	80.6	80.6
Cracked concrete											
Tension	C20/25	N.	[LVI]	28.6	33.2	20.2	36.3	42.9	36.3	46.4	55.3
	C50/60	N _{rec}	[kN]	45.3	46.2	32.0	57.5	67.9	57.5	73.3	87.5
Shear	≥ C20/25	V	[kN]	36.0	36.0	35.7	56.0	56.0	72.7	80.6	80.6

Material safety factor γ_M and safety factor for action $\gamma_I = 1.4$ are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} \cdot f_{Rd,sp} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load $N_{\rm Rds}$ of a single anchor

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80
Design steel resistance	N _{Rd,s}	[kN]	10.0	12.0	16.7	16.7	23.3	32.7	36.0

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Design steel resistance	N _{Rd.s}	[kN]	36.0	38.0	38.0	38.0	58.7	63.3	74.0

, , , , , , , , , , , , , , , , , , ,										
Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Design steel resistance	N _{Rds}	[kN]	74.0	64.7	57.1	125.3	125.3	148.0	148.0	148.0

2. Design pullout resistance

 $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

Table 2: Basic design resistance $N_{Rd,p}^0$ in case of pull-out failure of a single anchor

Anchor type: WIT-VIZ, M8 - M12

Antho: 17 por 1111 112/1110 11112									
Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80
Non-cracked concrete									
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	6.0	11.6	15.2	21.3	21.3	19.2	23.5
Cracked concrete									
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	5.8	8.1	10.7	14.9	14.9	13.4	16.4

Anchor type: WIT-VIZ, M12 - M16

/1 /									
Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Non-cracked concrete									
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	26.7	32.8	33.3	33.3	28.0	35.3	45.8
Cracked concrete									
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	21.3	23.0	26.5	32.1	19.6	24.7	32.1

Anchor type: WIT-VIZ, M16 - M24

<u> </u>										
Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	170	190	170	200	225
Non-cracked concrete										
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	50.0	60.0	40.4	72.7	85.9	72.7	92.8	110.7
Cracked concrete										
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	40.1	46.5	28.3	50.9	60.1	50.9	64.9	77.5

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance $N_{Rd,c}^{o}$ in case of concrete cone failure of a single anchor **Anchor type: WIT-VIZ, M8 - M12**

Thread size			M8	M8	M10	M10	M12	M12	M12					
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80					
Non-cracked concrete														
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	8.3	11.6	15.2	21.3	21.3	19.2	23.5					
Cracked concrete														
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	5.8	8.1	10.7	14.9	14.9	13.4	16.4					

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16					
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125					
Non-cracked concrete														
Design concrete cone resistance	N ⁰ _{Rd.c}	[kN]	30.4	32.8	37.8	45.8	28.0	35.3	45.8					
Cracked concrete														
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	21.3	23.0	26.5	32.1	19.6	24.7	32.1					

Thread size			M16	M16	M20	M20	M20	M24	M24	M24				
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225				
Non-cracked concrete														
Design concrete cone resistance	N ⁰ _{Rd.c}	[kN]	57.3	66.4	40.4	72.7	85.9	72.7	92.8	110.7				
Cracked concrete														
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	40.1	46.5	28.3	50.9	60.1	50.9	64.9	77.5				

Table 5: Characteristic edge distance $c_{cr,N}$ and spacing $s_{cr,N}$

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80
Spacing	S _{cr, N}	[mm]	120.0	150.0	180.0	225.0	225.0	210.0	240.0
Edge distance	C _{cr, N}	[mm]	60.0	75.0	90.0	112.5	112.5	105.0	120.0

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Spacing	S _{cr, N}	[mm]	285.0	300.0	330.0	375.0	270.0	315.0	375.0
Edge distance	C _{cr, N}	[mm]	142.5	150.0	165.0	187.5	135.0	157.5	187.5

Anchor type: WIT-VIZ, M16 - M24

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	170	190	170	200	225
Spacing	S _{cr, N}	[mm]	435.0	480.0	345.0	510.0	570.0	510.0	600.0	675.0
Edge distance	C ^{ct N}	[mm]	217.5	240.0	172.5	255.0	285.0	255.0	300.0	337.5

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

^{2]} strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f_{sx}, f_{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 8: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 9: Design resistance $N_{\rm Rd,sp}^{\rm O}$ in case of concrete splitting failure of a single anchor

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12				
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	<i>7</i> 0	80				
Non-cracked concrete													
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	5.0	6.0	10.7	13.3	13.3	13.3	23.5				

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16				
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125				
Non-cracked concrete													
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	20.0	26.7	26.7	26.7	26.7	33.3	33.3				

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Non-cracked concrete										
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	40.0	53.3	40.4	72.7	76.7	72.7	92.8	93.3

Table 10: Characteristic edge distance $c_{c,sp}$ and spacing $s_{c,sp}$

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80
Characteristic spacing	S _{cr, sp}	[mm]	120.0	150.0	180.0	225.0	225.0	210.0	240.0
Characteristic edge distance	C _{cr, sp}	[mm]	60.0	75.0	90.0	112.5	112.5	105.0	120.0
Minimum member thickness	h _{min}	[mm]	100	100	120	150	150	140	160

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Characteristic spacing	S cr, sp	[mm]	285.0	300.0	330.0	375.0	270.0	315.0	375.0
Characteristic edge distance	C _{cr, sp}	[mm]	142.5	150.0	165.0	187.5	135.0	157.5	187.5
Minimum member thickness	h _{min}	[mm]	190	200	220	250	180	200	250

Anchor type: WIT-VIZ, M16 - M24

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Characteristic spacing	S _{cr, sp}	[mm]	435.0	480.0	345.0	510.0	570.0	510.0	600.0	675.0
Characteristic edge distance	C _{cr, sp}	[mm]	217.5	240.0	172.5	255.0	285.0	255.0	300.0	337.5
Minimum member thickness	h _{min}	[mm]	290	320	230	340	380	340	400	450

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders 1)	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,sp , f sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , f sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 13: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 15c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure V_{Rd}

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

 $\text{3. Concrete edge failure } \qquad V_{\textit{Rd,c}} = V_{\textit{Rd,c}}^{\textit{0}} \cdot f_{\textit{b,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c2.V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$

1. Design steel shear resistance

Table 15: Design value of steel resistance $V_{\rm Rd,s}$ of a single anchor

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80
Design steel resistance	V _{Rd,s}	[kN]	11.2	11.2	16.8	16.8	27.2	27.2	27.2

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Design steel resistance	V _{Rd,s}	[kN]	27.2	27.2	27.2	27.2	50.4	50.4	50.4

Anchor type: WIT-VIZ, M16 - M24

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	1 <i>7</i> 0	190	1 <i>7</i> 0	200	225
Design steel resistance	V _{Rd.s}	[kN]	50.4	50.4	50.0	78.4	78.4	112.8	112.8	112.8

2. Concrete pry-out resistance

$$V_{\rm Rd,c} = k_{\rm g} \cdot N_{\rm Rd,c}$$

Table 16: factor k_s for calculating design pry-out resistance

Anchor type: WIT-VIZ, M8 - M12

Thread size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h_{ef}	[mm]	40	50	60	75	75	70	80
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0

Anchor type: WIT-VIZ, M12 - M16

Thread size			M12	M12	M12	M12	M16	M16	M16
Effective anchorage depth	h _{ef}	[mm]	95	100	110	125	90	105	125
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0

Thread size			M16	M16	M20	M20	M20	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	145	160	115	170	190	170	200	225
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Concrete edge resistance

$$V_{\mathrm{Rd,c}} = V_{\mathrm{Rd,c}}^0 \cdot f_{\mathrm{b,V}} \cdot f_{\mathrm{s,V}} \cdot f_{\mathrm{c2,V}} \cdot f_{\mathrm{a}} \cdot f_{\mathrm{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V_{\mathrm{Rd,c}}^{\mathrm{O}}$ in case of concrete edge failure

Thread size	M	18	N	18	M	10	М	10	M	12	M	12	M	12
h _{ef} [mm]	4	.0	5	0	6	0	7	'5	7	5	7	0	8	0
Edge distance c			,		,		٧	rO Rd,c						
[mm]								(N]						
-	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
40	3.0	2.1	3.1	2.2	-	2.4	-	2.5	-	-	-	-	-	-
45	3.5	2.5	3.7	2.6	-	2.8	-	2.9	-	-		-	-	-
50	4.1	2.9	4.2	3.0	4.5	3.2	4.7	3.4	4.7	3.4		-	-	3.5
55	4.6	3.3	4.8	3.4	5.1	3.6	5.4	3.8	5.4	3.8	5.4	3.8	5.6	4.0
60	5.2	3.7	5.4	3.8	5.7	4.1	6.0	4.3	6.0	4.3	6.1	4.3	6.3	4.4
65	5.8	4.1	6.0	4.3	6.4	4.5	6.7	4.7	6.7	4.7	6.7	4.8	6.9	4.9
70	6.4	4.5	6.6	4.7	7.0	5.0	7.3	5.2	7.3	5.2	7.4	5.3	7.6	5.4
75	7.0	5.0	7.3	5.2	7.7	5.5	8.0	5.7	8.0	5.7	8.1	5.8	8.3	5.9
80	7.7	5.4	8.0	5.6	8.4	6.0	8.8	6.2	8.8	6.2	8.8	6.3	9.1	6.4
85	8.4	5.9	8.6	6.1	9.1	6.5	9.5	6.7	9.5	6.7	9.6	6.8	9.8	7.0
90	9.0	6.4	9.3	6.6	9.8	7.0	10.2	7.2	10.2	7.2	10.3	7.3	10.6	7.5
95	9.7	6.9	10.0	<i>7</i> .1	10.6	7.5	11.0	7.8	11.0	7.8	11.1	7.9	11.4	8.1
100	10.4	7.4	10.8	7.6	11.3	8.0	11.8	8.3	11.8	8.3	11.9	8.4	12.2	8.6
110	11.9	8.4	12.3	8.7	12.9	9.1	13.4	9.5	13.4	9.5	13.5	9.6	13.8	9.8
120	13.4	9.5	13.8	9.8	14.5	10.3	15.0	10.6	15.0	10.6	15.2	10.7	15.5	11.0
130	15.0	10.6	15.5	11.0	16.2	11.5	16.7	11.9	16.7	11.9	16.9	12.0	17.3	12.2
140	16.7	11.8	1 <i>7</i> .1	12.1	17.9	12.7	18.5	13.1	18.5	13.1	18.7	13.2	19.1	13.5
150	18.3	13.0	18.9	13.4	19. <i>7</i>	13.9	20.3	14.4	20.3	14.4	20.5	14.5	20.9	14.8
160	20.1	14.2	20.6	14.6	21.5	15.2	22.2	1 <i>5.7</i>	22.2	1 <i>5.7</i>	22.4	15.9	22.8	16.2
170	21.9	15.5	22.4	15.9	23.4	16.6	24.1	1 <i>7</i> .1	24.1	1 <i>7</i> .1	24.3	17.2	24.8	17.6
180	23.7	16.8	24.3	17.2	25.3	1 <i>7</i> .9	26.1	18.5	26.1	18.5	26.3	18.6	26.8	19.0
190	25.6	18.1	26.2	18.6	27.3	19.3	28.1	19.9	28.1	19.9	28.3	20.0	28.8	20.4
200	27.5	19.5	28.2	19.9	29.3	20.7	30.1	21.3	30.1	21.3	30.4	21.5	30.9	21.9
250	37.6	26.7	38.5	27.3	39.9	28.3	41.0	29.0	41.0	29.0	41.3	29.2	42.0	29.8
300	48.8	34.5	49.8	35.3	51.5	36.5	52.8	37.4	52.8	37.4	53.2	37.7	54.0	38.3
350	60.7	43.0	61.9	43.9	64.0	45.3	65.5	46.4	65.5	46.4	65.9	46.7	66.9	47.4
400	73.4	52.0	74.9	53.0	77.2	54.7	79.0	55.9	79.0	55.9	79.4	56.3	80.6	57.1
450	86.9	61.6	88.5	62.7	91.2	64.6	93.2	66.0	93.2	66.0	93.7	66.4	95.0	67.3
500	101.1	71.6	102.9	72.9	105.9	75.0	108.1	76.6	108.1	76.6	108. <i>7</i>	77.0	110.2	78.0
550	115.9	82.1	117.9	83.5	121.2	85.9	123.7	87.6	123.7	87.6	124.3	88.1	126.0	89.2
600	131.3	93.0	133.5	94.6	137.2	97.2	139.9	99.1	139.9	99.1	140.6	99.6	142.4	100.9
650	-	-	-	-	153.8	108.9	156.7	111.0	156.7	111.0	157.5	111.6	159.4	112.9
700	-	-	-	-	170.9	121.0	174.1	123.3	174.1	123.3	174.9	123.9	177.0	125.4
750	-	-	-	-	-	-	192.0	136.0	192.0	136.0	193.0	136.7	195.2	138.3
800	-	-	-	-	-	-	-	-	-	-	211.5	149.8	213.9	151.5

Thread size	M	12	M	12	M	12	M	12	M	16	M	16	M	16
h _{ef} [mm]	9	5	10	00	1	10	12	 25	9	0	10	D5	12	25
Edge distance c			Į.					0 Rd,c	Į.		I.			
[mm]								:N]						
[]	non-	cracked	non-	cracked	non-	cracked	non-	cracked	non-	cracked	non-	cracked	non-	cracked
	cracked		cracked		cracked		cracked		cracked		cracked		cracked	
50	-	3.7	-	3.7	-	3.8	-	4.0	5.4	3.8	-	4.0	-	-
55	5.8	4.1	5.9	4.2	6.1	4.3	6.3	4.4	6.1	4.3	-	4.5	-	-
60	6.5	4.6	6.6	4.7	6.8	4.8	7.0	4.9	6.7	4.8	7.0	5.0	7.4	5.2
65	7.2	5.1	7.3	5.2	7.5	5.3	7.7	5.5	7.5	5.3	7.8	5.5	8.1	5.8
70	7.9	5.6	8.0	5.7	8.2	5.8	8.5	6.0	8.2	5.8	8.5	6.0	8.9	6.3
75	8.7	6.1	8.8	6.2	9.0	6.3	9.2	6.5	8.9	6.3	9.3	6.6	9.7	6.9
80	9.4	6.7	9.5	6.7	9.7	6.9	10.0	<i>7</i> .1	9.7	6.9	10.1	<i>7</i> .1	10.5	7.4
85	10.2	7.2	10.3	7.3	10.5	7.4	10.8	7.7	10.5	7.4	10.9	7.7	11.3	8.0
90	11.0	7.8	11.1	7.9	11.3	8.0	11.6	8.2	11.3	8.0	11.7	8.3	12.2	8.6
95	11.8	8.3	11.9	8.4	12.1	8.6	12.5	8.8	12.1	8.6	12.5	8.9	13.0	9.2
100	12.6	8.9	12.7	9.0	13.0	9.2	13.3	9.4	13.0	9.2	13.4	9.5	13.9	9.9
110	14.3	10.1	14.4	10.2	14.7	10.4	15.1	10.7	14.7	10.4	15.1	10.7	15.7	11.1
120	16.0	11.3	16.2	11.4	16.4	11.6	16.9	11.9	16.4	11.6	16.9	12.0	17.6	12.5
130	17.8	12.6	18.0	12.7	18.3	12.9	18. <i>7</i>	13.3	18.3	12.9	18.8	13.3	19.5	13.8
140	19.6	13.9	19.8	14.0	20.1	14.3	20.6	14.6	20.1	14.3	20.7	14.7	21.5	15.2
150	21.5	15.3	21.7	15.4	22.1	15.6	22.6	16.0	22.1	15.6	22.7	16.1	23.5	16.6
160	23.5	16.6	23.7	16.8	24.1	17.0	24.6	17.4	24.1	1 <i>7</i> .0	24.7	17.5	25.5	18.1
170	25.5	18.0	25.7	18.2	26.1	18.5	26.7	18.9	26.1	18.5	26.8	19.0	27.7	19.6
180	27.5	19.5	27.7	19.6	28.2	19.9	28.8	20.4	28.2	19.9	28.9	20.5	29.8	21.1
190	29.6	21.0	29.8	21.1	30.3	21.4	30.9	21.9	30.3	21.4	31.1	22.0	32.0	22.7
200	31.7	22.5	32.0	22.6	32.4	23.0	33.1	23.5	32.4	23.0	33.3	23.6	34.3	24.3
250	43.0	30.4	43.3	30.7	43.9	31.1	44.7	31.7	43.9	31.1	44.9	31.8	46.2	32.7
300	55.2	39.1	55.6	39.4	56.3	39.9	57.3	40.6	56.3	39.9	57.5	40.7	59.0	41.8
350	68.3	48.4	68.7	48.7	69.5	49.3	70.7	50.1	69.6	49.3	71.0	50.3	72.7	51.5
400	82.2	58.2	82.7	58.6	83.6	59.2	84.9	60.2	83.6	59.2	85.3	60.4	87.2	61.8
450	96.8	68.6	97.4	69.0	98.4	69.7	99.9	70.8	98.5	69.7	100.3	71.0	102.5	72.6
500	112.1	79.4	112.8	79.9	113.9	80. <i>7</i>	115.6	81.9	114.0	80.7	116.0	82.2	118.5	83.9
550	128.2	90.8	128.8	91.3	130.1	92.2	132.0	93.5	130.2	92.2	132.4	93.8	135.2	95.7
600	144.8	102.6	145.5	103.1	147.0	104.1	149.0	105.5	147.0	104.1	149.5	105.9	152.5	108.0
650	162.0	114.8	162.8	115.4	164.4	116.5	166.6	118.0	164.5	116.5	167.1	118.4	170.4	120.7
700	179.9	127.4	180.7	128.0	182.4	129.2	184.8	130.9	182.5	129.3	185.4	131.3	188.9	133.8
750	198.3	140.4	199.2	141.1	201.0	142.4	203.5	144.2	201.1	142.4	204.2	144.6	207.9	147.3
800	217.2	153.8	218.2	154.6	220.1	155.9	222.8	1 <i>57</i> .8	220.2	156.0	223.6	158.3	227.5	161.2
850	236.6	167.6	237.7	168.4	239.8	169.8	242.6	171.9	239.9	169.9	243.4	172.4	247.7	175.4
900	256.6	181.8	257.7	182.6	259.9	184.1	263.0	186.3	260.1	184.2	263.8	186.9	268.3	190.1
950	277.0	196.2	278.3	197.1	280.6	198.7	283.8	201.0	280.7	198.8	284.7	201.7	289.5	205.0
1000	-		299.3	212.0	301.7	213.7	305.1	216.1	301.9	213.8	306.1	216.8	311.1	220.4
1100	-	-	-	-	345.3	244.6	349.1	247.3	-	-	-	-	355.8	252.0
1200	-			-	-	-	394.9	279.7					402.2	284.9
1300	-	-	-	-	-	-	-	-	-		-	-	-	-
1400	-	-	-	-	-	-	-	-	-	-	-	-		
1500	-	-	-	-	-	-	-	-	-		-	-		-
1600	-			-		-			-		-	-		-
1700	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1800	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1900	-	-	-	-	-	-	-	-	-	-	-	-		-
2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2125	-	-	-	-	-	-	-	-	-	-	-	-	-	

Thread size	M	16	M	16	M	20	M	20	M	20
h _{ef} [mm]		45		50	1	15	17	70	19	90
Edge distance c	1					0 Rd,c				
[mm]						:N]				
<u></u>	non-	cracked	non-	cracked	non-	cracked	non-	cracked	non-	cracked
	cracked		cracked		cracked		cracked		cracked	
60	7.7	5.5	7.9	5.6	-	-	-	-	-	-
65	8.5	6.0	8.7	6.2	-	-	-	-	-	-
70	9.3	6.6	9.6	6.8	-	-	-	-	-	-
75	10.1	7.2	10.4	7.4	-	-	-	-	-	-
80	10.9	7.7	11.2	8.0	10.7	7.6	12.2	8.6	12.6	8.9
85	11.8	8.3	12.1	8.6	11.5	8.2	13.1	9.3	13.6	9.6
90	12.6	9.0	13.0	9.2	12.4	8.8	14.0	9.9	14.5	10.3
95	13.5	9.6	13.9	9.8	13.3	9.4	15.0	10.6	15.5	11.0
100	14.4	10.2	14.8	10.5	14.2	10.0	15.9	11.3	16.5	11.7
110	16.3	11.5	16.7	11.8	16.0	11.3	17.9	12.7	18.5	13.1
120	18.2	12.9	18.6	13.2	1 <i>7</i> .8	12.6	19.9	14.1	20.5	14.5
130	20.1	14.3	20.6	14.6	19.8	14.0	22.0	15.6	22.6	16.0
140	22.1	1 <i>5.7</i>	22.6	16.0	21.8	15.4	24.1	1 <i>7</i> .1	24.8	17.6
150	24.2	1 <i>7</i> .1	24.7	17.5	23.8	16.9	26.3	18.6	27.0	19.2
160	26.3	18.6	26.8	19.0	25.9	18.3	28.6	20.2	29.3	20.8
170	28.5	20.2	29.0	20.6	28.0	19.9	30.8	21.8	31.6	22.4
180	30.7	21.7	31.3	22.1	30.2	21.4	33.2	23.5	34.0	24.1
190	32.9	23.3	33.5	23.8	32.4	23.0	35.5	25.2	36.4	25.8
200	35.2	24.9	35.9	25.4	34.7	24.6	38.0	26.9	38.9	27.5
250	47.3	33.5	48.1	34.1	46.7	33.1	50.7	35.9	51.8	36.7
300	60.4	42.8	61.3	43.4	59. <i>7</i>	42.3	64.4	45.6	65.7	46.5
350	74.3	52.6	75.4	53.4	73.5	52.0	79.0	55.9	80.5	57.0
400	89.0	63.1	90.3	64.0	88.1	62.4	94.4	66.8	96.1	68.1
450	104.5	74.0	105.9	75.0	103.5	73.3	110.5	78.3	112.4	79.6
500	120.7	85.5	122.3	86.6	119.6	84.7	127.4	90.2	129.5	91.7
550	137.6	97.5	139.4	98.7	136.4	96.6	144.9	102.7	147.3	104.3
600	155.2	109.9	157.0	111.2	153.8	109.0	163.1	115.5	165.7	117.3
650	173.3	122.7	175.3	124.2	171.9	121.7	181.9	128.9	184.7	130.8
700	192.0	136.0	194.2	137.6	190.5	134.9	201.3	142.6	204.3	144.7
750	211.3	149.7	213.7	151.3	209.7	148.5	221.3	156.8	224.5	159.0
800	231.2	163.7	233.7	165.5	229.4	162.5	241.8	171.3	245.2	173.7
850	251.5	178.2	254.2	180.1	249.7	176.8	262.9	186.2	266.5	188.8
900	272.4	193.0	275.2	195.0	270.4	191.6	284.5	201.5	288.3	204.2
950	293.8	208.1	296.8	210.2	291.7	206.6	306.5	217.1	310.6	220.0
1000	315.7	223.6	318.8	225.8	313.5	222.0	329.1	233.1	333.3	236.1
1100	360.8	255.6	364.3	258.0	358.4	253.9	375.6	266.1	380.3	269.4
1200	407.7	288.8	411.5	291.5	405.1	287.0	424.0	300.3	429.1	303.9
1300	456.4	323.3	460.5	326.2	453.5	321.3	474.1	335.8	479.6	339.7
1400	506.6	358.9	511.1	362.1	-	-	525.8	372.4	531.8	376.7
1500	-	-	563.3	399.0	-	-	579.1	410.2	585.5	414.8
1600	-	-	617.1	437.1	-	-	634.0	449.1	640.9	453.9
1700	-		-	-	-	-	690.4	489.0	697.7	494.2
1800	-	-	-	-	-	-	-	-	755.9	535.4
1900	-	-	-	-	-	-	-	-	815.6	577.7

Anchor type: WIT-VIZ, M24

Thread size	M	24	M:	24	M2	24
h _{ef} [mm]	17	70	20	00	22	5
Edge distance c,			\	/0 Rd,c		
[mm]				kN]		
	non-	cracked	non-	cracked	non-	cracked
	cracked		cracked		cracked	
80	12.4	8.8	-	9.3	-	9.7
85	13.3	9.4	-	9.9	-	10.3
90	14.3	10.1	-	10.6	-	11.1
95	15.2	10.8	-	11.3	-	11.8
100	16.2	11.5	-	12.0	-	12.5
110	18.2	12.9	19.1	13.5	19. <i>7</i>	14.0
120	20.2	14.3	21.2	15.0	21.9	15.5
130	22.3	15.8	23.3	16.5	24.1	1 <i>7</i> .1
140	24.5	1 <i>7</i> .3	25.5	18.1	26.4	18. <i>7</i>
150	26.7	18.9	27.8	19. <i>7</i>	28.7	20.3
160	29.0	20.5	30.1	21.3	31.1	22.0
170	31.3	22.1	32.5	23.0	33.5	23.7
180	33.6	23.8	34.9	24.7	35.9	25.5
190	36.0	25.5	37.4	26.5	38.4	27.2
200	38.5	27.2	39.9	28.2	41.0	29.0
250	51.3	36.3	53.0	37.6	54.4	38.5
300	65.1	46.1	67.1	47.6	68.7	48.7
350	79.8	56.5	82.1	58.2	84.0	59.5
400	95.3	67.5	97.9	69.4	100.0	70.8
450	111.6	79.0	114.5	81.1	116.8	82.7
500	128.6	91.1	131.8	93.4	134.3	95.2
550	146.2	103.6	149.8	106.1	152.6	108.1
600	164.5	116.5	168.4	119.3	171.4	121.4
650	183.5	129.9	187.7	132.9	190.9	135.2
700	203.0	143.8	207.5	147.0	211.0	149.4
750	223.1	158.0	227.9	161.4	231.6	164.1
800	243.7	172.6	248.9	176.3	252.8	179.1
850	264.9	187.6	270.4	191.5	274.6	194.5
900	286.6	203.0	292.4	207.1	296.8	210.3
950	308.8	218.7	314.9	223.1	319.6	226.4
1000	331.5	234.8	337.9	239.4	342.9	242.9
1100	378.3	267.9	385.4	273.0	390.8	276.8
1200	426.9	302.4	434.6	307.8	440.5	312.0
1300	477.2	338.0	485.6	344.0	492.0	348.5
1400	529.2	374.9	538.3	381.3	545.2	386.2
1500	582.8	412.8	592.5	419.7	599.9	425.0
1600	638.0	451.9	648.3	459.2	656.2	464.8
1700	694.6	492.0	705.6	499.8	714.1	505.8
1800	-	-	764.4	541.4	773.3	547.8
1900	-	-	824.5	584.0	834.0	590.7
2000	-	-	886.1	627.6	896.0	634.7
2125	-	-	-	-	975.5	691.0
2250	-	-	-	-	1056.9	748.7

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of edge distance

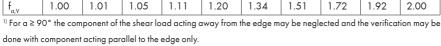
$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{15c_1}\right) \le 1$$

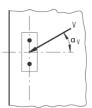
Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1.00	1.10	1.20	1.30	1.40	1.50
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c_1 \le c_2$

²⁾ strength at 28 days of 150 mm cubes




d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	≥ 1.50
f _{h.V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

 $V_{\rm Fd}$ = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

¹⁾ This verification is not required in case of shear load with lever arm

Mechanical characteristics

Thread size			W8	W8	M10	M10	M12	M16	M16	M16	M16	M20	M20	M20	M24	M24	M24						
Effective anchorage depth	٦	[mm]	40	50	09	75	75	70	80	95	100	110	125	8	105	125	145	115	170	190	170	200	225
Governing cross section	ction																						
Stressed cross section	≪ ٌ	[mm ²]	18.9	22.9	32.2	32.2	43.0	62.2	69.4	69.4	77.0	77.0	77.0	111.2	120.8	141.0	141.0	162.9	237.8	237.8	280.6	280.6	280.6
Section modulus	M	[mm ₃]	9.11	15.5	25.7	25.7	39.8	69.2	81.5	81.5	95.3	95.3	95.3	165.4	187.2	236.2	236.2	293.1	517.2	517.2	662.8	662.8	662.8
Yield strength	۰۰,	[N/mm²]	640	640	640	640	940	640	640	640	640	640	640	640	640	940	640	260	560	260	260	560	260
Tensile strength	پ	[N/mm²]	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	700	700	700	700	700	700
Stressed cross section of threaded part	on of th	readed p	art																				
Stressed cross section	ď	[mm ²]	36.6	36.6	58.0	58.0	84.3	84.3	84.3	84.3	84.3	84.3	84.3	157.0	157.0	157.0	157.0	245.0	245.0	245.0	352.0	352.0	352.0
Section modulus	≥	[mm ₃]	31.2	31.2	62.3	62.3	109.2	109.2	109.2	109.2	109.2	109.2	109.2	277.5	277.5	277.5	277.5	540.9	540.9	540.9	931.5	931.5	931.5
Yield strength	+ ^	$[N/mm^2]$	979	640	979	640	940	940	940	640	640	940	640	640	940	640	940	260	560	260	260	560	560
Tensile strength	÷°	$[N/mm^2]$	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	700	700	700	700	700	700
Design bending moment	M ⁰ _{Rd,s}	[Nm]	24	24	48	48	84	84	84	84	84	84	84	213	213	213	213	324	363	363	627	627	627

Material specifications

Š	Part	Stainless steel A4	High corrosion resistant steel (HCR)
_	Anchor rod	Stainless steel, 1.4401, 1.4404, 1.4571,	High corrosion resistant steel 1.4529, 1.4565
•		1.4362, EN 10088:2005, coated	acc. to EN 10088:2005, coated
2a	Washer	Stainless steel 1.4401, 1.4571, EN	High corrosion resistant steel 1.4529, 1.4565
2 b	Washer with bore	10088:2005	acc. to EN 10088:2005, coated
		150 2504:2000 4 4 70 1 4 4 01 1 4 5 2 1	ISO 3506:2009, Property class 70,
က	Hexagon nut	150 55005.2004 A4-7 0, 1.4401, 1.457 1,	high corrosion resistant steel 1.4529 or 1.4565,
		EIN 10088-2003	EN 10088:2005
4	Mortar cartridge	Vinyl Ester Resin, styr	Vinyl Ester Resin, styrene free, mixing ratio 1:10

Chemical resistance

Chemical Agent	Concentration	Resistant	Not Resistan
Acetic acid	>40		•
Acetic acid	10	•	
Acetone	5		•
Ammonia, aqueous solution	conc.		•
Aniline			•
Calcium hydroxide			•
Carbon tetrachloride		•	
Diesel fuel		•	
Boric Acid, aqueous solution	all	•	
Glycol		•	
Formic acid	30	•	
Calcium hydroxide, suspended in water	all		•
Caustic soda solution	all		•
Citric acid	50	•	
Hydrochloric acid	all		•
Lactic acid	<80	•	
Sea water		•	
Formaldehyde, aqueous solution	20		•
Fuel Oil		•	
Glycol (Ethylene glycol)		•	
Isopropyl alcohol		•	
Linseed oil		•	
Magnesium chloride, aqueous solution	all	•	
Methanol			•
Nitric acid	30		•
Oleic acid		•	
Phenol, aqueous solution	all		•
Phosphoric acid	<80	•	
Potassium carbonate, aqueous solution	all		•
Potassium chlorite, aqueous solution	all	•	
Potassium nitrate, aqueous solution	all	•	
Sodium Chloride, aqueous solution	all	•	
Sodium phosphate, aqueous solution	all	•	
Sodium silicate	all	-	•
Sulfuric acid	<50	•	
Tartaric acid		•	
Toluene			•
Trichloroethylene			•
Ethanol	96		•

Results shown in the table are applicable to brief periods of chemical contact with full cured adhesive (e.g. temporary contact with adhesive during a spill).

Properties of adhesive

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 °C to +80 °C	+50 °C	+80 °C
Temperature range II	-40 °C to +120 °C	+72 °C	+120 °C
Property		Testing method	Results
Stability			
UV-resistance (sunlight)			not resistant
Temperature resistance			120 °C
Water resistancy			resistant
Cleaning agents			1% tenside solution: no effects
Physical properties			
Flexural properties	Flexural strength	DIN EN 196-1	after 24 hours: 19.2 N/mm²
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours: ≥ 96.1 N/mm²
Dynamic modulus of elasticity		DIN EN 12504-4	after 24 hours: 13.79 GPa
Thermal conductivity	Modified transi	ient plane source method	0.88 / 0.82 W/mK
Specific contact resistance		IEC 93	4.8 x 109 Ωcm
Density		DIN 53479	$1.74 \pm 0.1 \text{ g/cm}^3$
Workability features			
Watertightness / impermeability		DIN EN 12390-8	after 72 hours at 5bar: 0mm
Open time (10-20°C)			6 min
Curing time (10-20°C)			80 min
Shelf life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

Working and curing times WIT-VIZ

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
-5°C	90 min	6 h
-4°C to -1°C	45 min	6 h
0°C to 4°C	20 min	3 h
5°C to 9°C	12 min	2 h
10°C to 19°C	6 min	80 min
20°C to 29°C	4 min	45 min
30°C to 34°C	2 min	25 min
35°C to 39°C	80 s	20 min
40°C	80 s	15 min

¹⁾ for wet base material the curing time must be doubled

Working and curing times WIT-EXPRESS

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
-5°C	40 min	4 h
-4°C to -1°C	20 min	4 h
-0°C to 4°C	10 min	2 h
5°C to 9°C	6 min	1 h
10°C to 19°C	3 min	40 min
20°C to 29°C	1 min	20 min
+30°C	1 min	10 min
35°C to 39°C	80 s	20 min
40°C	80 s	15 min

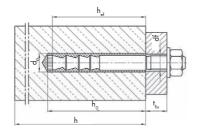
¹⁾ for wet base material the curing time must be doubled

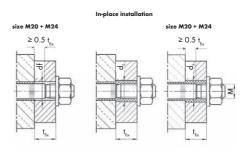
Installation parameters

Anchor type: WIT-VIZ, M8 - M12

Anchor size			M8	M8	M10	M10	M12	M12	M12
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80
Nominal drill hole diameter	d _o	[mm]	10	10	12	12	12	14	14
Drill-hole depth	h₀≥	[mm]	42	55	65	80	80	75	85
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13	13	13	15	15
Maximum torque moment	T _{inst} ≤	[Nm]	10	10	15	15	25	25	25
Diameter of clearance in hole	Pre-positioned $d_f \le$	[mm]	9	9	12	12	14	14	14
in the fixture	Push-through d _f ≤	[mm]	-	-	14	14	14 ¹⁾ /	16	16
Minimum thickness of member	h _{min}	[mm]	80	80	100	110 / 100 ²⁾	110	110	110
Non-cracked Concrete									
Minimum spacing	S _{min}	[mm]	40	40	50	50	50	55	55
Minimum edge distance	C _{min}	[mm]	40	40	50	50	50	55	55
Cracked concrete									
Minimum spacing	S _{min}	[mm]	40	40	40	40	50	55	40
Minimum edge distance	C _{min}	[mm]	40	40	40	40	50	55	50

Anchor size			M12	M12	M12	M12	M16	M16	M16			
Effective anchorage depth	h _{ef} ≥	[mm]	95	100	110	125	90	105	125			
Nominal drill hole diameter	d _o	[mm]	14	14	14	14	18	18	18			
Drill-hole depth	h₀≥	[mm]	100	105	115	130	98	113	133			
Diameter of cleaning brush	D≥	[mm]	15	15	15	15	19	19	19			
Maximum torque moment	T _{inst} ≤	[Nm]	25	30	30	30	50	50	50			
Diameter of clearance in hole	Pre-positioned $d_f \le$	[mm]	14	14	14	14	18	18	18			
in the fixture	Push-through d _f ≤	[mm]	16	16	16	16	20	20	20			
Minimum thickness of member	h _{min}	[mm]	130 / 125 ²⁾	130	140	160	130	150	170 / 160 ²⁾			
Non-cracked Concrete												
Minimum spacing	S _{min}	[mm]	55	80 3)	81 ³⁾	82 ³⁾	50	60	60			
Minimum edge distance	C _{min}	[mm]	55	55 ²⁾	55 ²⁾	55 ²⁾	50	60	60			
Cracked concrete												
Minimum spacing	S _{min}	[mm]	40	50	50	50	50	50	60			
Minimum edge distance	C _{min}	[mm]	50	50	50	50	50	50	60			




Anchor type: WIT-VIZ, M16 - M24

Anchor size			M16	M16	M20	M20	M20	M20	M24	M24
Effective anchorage depth	h _{ef} ≥	[mm]	145	160	115	170	190	170	200	225
Nominal drill hole diameter	d _o	[mm]	18	18	22	24	24	26	26	26
Drill-hole depth	h₀≥	[mm]	153	168	120	180	200	185	215	240
Diameter of cleaning brush	D≥	[mm]	19	19	23	25	25	27	27	27
Maximum torque moment	T _{inst} ≤	[Nm]	50	50	80	80	80	100	120	120
Diameter of clearance in	Pre-positioned d _f ≤	[mm]	18	18	22	24 (22)	24 (22)	26	26	26
hole in the fixture	Push-through d _f ≤	[mm]	20	20	24	26	26	28	28	28
Minimum thickness of member	h _{min}	[mm]	190 / 180 ²⁾	205 / 200 ²⁾	160	230 / 220 ²⁾	250 / 240 ²⁾	230 / 220 ²⁾	270 / 260 ²⁾	300 / 290 ²⁾
Non-cracked Concrete										
Minimum spacing	S _{min}	[mm]	60	60	80	80	80	80	105	105
Minimum edge distance	C _{min}	[mm]	60	60	80	80	80	105	105	105
Cracked concrete										
Minimum spacing	S _{min}	[mm]	60	60	80	80	80	80	80	80
Minimum edge distance	C _{min}	[mm]	60	60	80	80	80	80	80	80

¹⁾ Check installation instructions

Pre-positioned insatallation

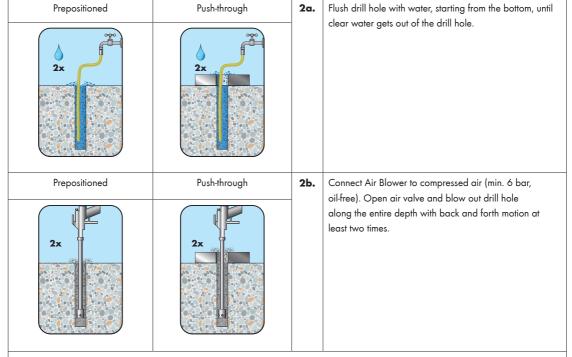
²⁾ The remote face of the concrete member shall be inspected to ensure there has been no break-through by drilling. In case of break-through, the ground of the drill hole shall be closed with high strength mortar. The full bonded length hef shall be achieved and any potential loss of injection mortar shall be compensated

Installation instructions

A) Bore hole drilling			
Prepositioned	Push-through	la.	Hammer (HD) or compressed air drilling (CD)
***			Drill a hole into the base material to the size and embedment depth required by the selected anchor rod Proceed with Step B1.
Prepositioned	Push-through	1b.	Hollow drill bit system (HDB)
			Drill hole perpendicular to concrete surface by using a vacuum drill bit. The nominal underpressure of the vacuum cleaner must be at least 230 mbar / 23kPa. Make sure the dust extraction is working properly throughout the whole drilling process. Additional cleaning is not necessary. Proceed with Step C.
Prepositioned	Push-through	1 c.	Diamond drilling (DD)
			Use diamond drill with diamond drill bit and depth gauge. Drill perpendicular to concrete surface. Remove drill core at least up to the nominal hole depth and check drill hole depth. Proceed with Step B2.
attention! Standing water	in the bore hole must be ren	noved	before cleaning.
1) Bore hole cleaning			
IAC: Cleaning for rod threaded	d diameters shown below		
Prepositioned M8 - M16	Push-through M10 - M16	2a.	Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump a minimum of two times.
2x 2x 2x	2x 2x 2x	2b.	Check diameter of cleaning brush. If the brush can be pushed into the drill hole without any resistance, it must be replaced. Check brush into the drill machine. Turn or the drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotate by drill machine.
		2c.	Finally blow the hole clean again with a hand pump a minimum of two times.

For prepositioned installation, the extension tube with reduced diameter must be added to the blow-out pump

for diameter M8.



CAC: Cleaning for dry, wet and water-filled bore holes for threaded diameters shown below 2a. Starting from the bottom or back of the bore hole, Prepositioned Push-through blow the hole clean with compressed air (min. 6 bar) M20 - M24 M20 - M24 a minimum of two times until return air stream is free of noticeable dust 2b. Check diameter of cleaning brush. If the brush can be pushed into the drill hole without any resistance, it must be replaced. Check brush into the drill machine. Turn on the drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine. 2c. Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

B2) Bore hole cleaning

SPCAC: Cleaning for dry, wet and water-filled bore holes for all diameters in non-cracked concrete

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

C) Preparation of bar and cartridge 3a. Check expiration date on cartridge. Never use when expired. Remove cap from cartridge. Screw Mixer Nozzle on cartridge. When using a new cartridge, always use a new Mixer Nozzle. Never use cartridge without Mixer Nozzle and never use Mixer Nozzle without helix inside. 3b. Insert cartridge in Dispenser. Before injecting discard mortar (at least 2 full strokes or a line of 10 cm) until it shows a consistent grey colour. Never use this mortar. D) Filling the bore hole 4. Prior to injection, check if Mixer Nozzle reaches the Prepositioned Push-through bottom of the drill hole. If it does not reach the bottom, plug Mixer Extension onto Mixer Nozzle in order to fill the drill hole properly. Fill hole with a sufficient quantity of injection mortar. Start from the bottom of the drill hole and work out to avoid trapping air pockets. 3 2

Prepositioned	Push-through	5a.	Insert the anchor rod WIT-VIZ-A by hand, rotating slightly
			up to the full embedment depth as marked on the anchor rod. In case of prepositioned installation, the anchor rod is properly set when excess mortar seeps from the hole. In case of push-through installation, the annular gap in the clearance hole in the fixture has to be filled completely by excess mortar after the installation. If the hole is not completely filled, pull out the anchor rod, let the mortar cure, drill out hole and repeat entire cleaning process.
Prepositioned	Push-through	5b.	Follow minimum curing times. During curing time, the
45 Min. +20°C	45 Min. +20 °C		anchor rod must not be moved or loaded.
Prepositioned	Push-through	5c.	Remove excess mortar.
Prepositioned	Push-through	5d.	For both installation types, the fixture can be mounted after auring time. Apply installation to give Tines
Tinat	Tinat		ted after curing time. Apply installation torque Tinst by using a torque wrench. In case of push through installation, the annular gap between the anchor rod and attachment may be optionally filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on static mixer. The annular gap is completely filled when excess mortar seeps out.

Filling Quantity

Anchor type: WIT-VIZ, M8 - M24

Thread size			M8	M10	M12	M16	M20	M20	M24
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	24	26
Drill depth	h _o / h ₁	[mm]							
Filling volume per 10mm embedment depth		[ml]	1.05	1.20	1.20	1.50	2.29	2.30	2.30

Assumed waste of 15 % included.

BONDED CONCRETE SCREW WIT-BS XL

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Type of installation

Concrete C12/15, Natural stone with dense structure

Cartrid	ge sizes	Art. no.
150 ml	coaxial	0905 450 301
410 ml	coaxial	0905 450 302

Special insert

Pre-positioned	In-place	Stand-off
✓	✓	-
Drilling method		

Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	1	=-

Applications

Approvals and certificates

Description	Authority/laboratory	No./date of issue
General building authority approval (German)	DIBt, Berlin	Pending

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to installation parameters
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

- Temperature range I: -40°C to +80°C (max. long term/short term base material temperature +50°C/+80°C)
- Dry or wet conditions of drill hole, hammer drilling
- Installation temperature range +5°C to +40°C

Characteristic loads

Screw size: Ø 10 - Ø 12

Screw Size				Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth		h _{ef}	[mm]	80	90	100	110	100	110	120	130
Non-cracked and cracked concrete											
T:	C20/25	NI.	[LA.I]	24.6	29.4	34.4	39. <i>7</i>	40.7	47.0	53.5	60.3
Tension	C50/60	N _{Rk}	[kN]	39.0	42.0	42.0	42.0	64.0	64.0	64.0	64.0
Shear	≥ C20/25	V _{Rk}	[kN]	34.0	34.0	34.0	34.0	42.0	42.0	42.0	42.0

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size				Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/	
				M16	M16	M16	M16	M18	M18	M18	M18	
Effective anchorage depth		h _{ef}	[mm]	100	110	125	140	100	125	140	160	
Non-cracked and cracked concrete												
т .	C20/25	N.	[LVI]	40.7	47.0	56.9	67.4	40.7	56.9	67.4	82.4	
Tension	C50/60	N _{Rk}	[kN]	64.3	74.2	89.9	90.0	64.3	89.9	106.6	110.0	
Shear	≥ C20/25	V _{Rk}	[kN]	64.0	64.0	64.0	64.0	81.4	96.0	96.0	96.0	

Screw Size				Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24	
Effective anchorage depth		h _{ef}	[mm]	100	125	150	200	100	125	150	200	
Non-cracked and cracked concrete												
т :	C20/25	NI	[LVI]	40.7	56.9	74.8	115.1	40.7	56.9	74.8	115.1	
Tension	C50/60	N _{Rk}	[kN]	64.3	89.9	118.2	174.0	64.3	89.9	118.2	181.9	
Shear	≥ C20/25	V _{Rk}	[kN]	81.4	107.0	107.0	107.0	81.4	107.0	107.0	107.0	

BONDED CONCRETE SCREW WIT-BS XL

Design loads

Screw size: Ø 10 - Ø 12

Screw Size				Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth		h _{ef}	[mm]	80	90	100	110	100	110	120	130
Non-cracked and cracked concrete											
т .	C20/25	N	[kN]	16.4	19.6	23.0	26.5	27.1	31.3	35.7	40.2
Tension	C50/60	N_{Rd}	[KIN]	26.0	30.0	30.0	30.0	42.9	45.7	45.7	45.7
Shear	≥ C20/25	V _{Rd}	[kN]	22.7	22.7	22.7	22.7	28.0	28.0	28.0	28.0

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size				Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/
				M16	M16	M16	M16	M18	M18	M18	M18
Effective anchorage depth		h _{ef}	[mm]	100	110	125	140	100	125	140	160
Non-cracked and cracked concrete											
т .	C20/25		[[]]	27.1	31.3	37.9	44.9	27.1	37.9	44.9	54.9
Tension	C50/60	N _{Rd}	[kN]	42.9	49.5	60.0	64.3	42.9	60.0	<i>7</i> 1.1	73.3
Shear	≥ C20/25	V _{Rd}	[kN]	42.7	42.7	42.7	42.7	54.3	64.0	64.0	64.0

Screw Size				Ø 22/	Ø 22/							
				M20	M20	M20	M20	M24	M24	M24	M24	
Effective anchorage depth		h _{ef}	[mm]	100	125	150	200	100	125	150	200	
Non-cracked and cracked concrete												
т .	C20/25	N	II N II	27.1	37.9	49.8	76.7	27.1	37.9	49.8	76.7	
Tension	C50/60	N _{Rd}	[kN]	42.9	60.0	78.8	116.0	42.9	60.0	<i>7</i> 8.8	121.2	
Shear	≥ C20/25	V _{Rd}	[kN]	54.3	71.3	71.3	71.3	54.3	71.3	71.3	71.3	

Recommended/allowable loads 1)

Screw size: Ø 10 - Ø 12

Screw Size				Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth		h _{ef}	[mm]	80	90	100	110	100	110	120	130
Non-cracked and cracked concrete											
т .	C20/25	N.	[kN]	11 <i>.7</i>	14.0	16.4	18.9	19.4	22.4	25.5	28.7
Tension	C50/60	N _{rec}	[KIN]	18.6	21.4	21.4	21.4	30.6	32.7	32.7	32.7
Shear	≥ C20/25	V	[kN]	16.2	16.2	16.2	16.2	20.0	20.0	20.0	20.0

Material safety factor γ_M and safety factor for action $\gamma_L = 1.4$ are included. The material safety factor depends on the failure mode.

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size				Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/
				M16	M16	M16	M16	M18	M18	M18	M18
Effective anchorage depth		h _{ef}	[mm]	100	110	125	140	100	125	140	160
Non-cracked and cracked concrete											
т .	C20/25	N.	[L K I]	19.4	22.4	27.1	32.1	19.4	27.1	32.1	39.2
Tension	C50/60	N _{rec}	[kN]	30.6	35.4	42.8	45.9	30.6	42.8	50.8	52.4
Shear	≥ C20/25	V _{rec}	[kN]	30.5	30.5	30.5	30.5	38.8	45.7	45.7	45.7

 $^{^{11}}$ Material safety factor γ_M and safety factor for action γ_L = 1.4 are included. The material safety factor depends on the failure mode.

Screw Size				Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24
Effective anchorage depth		h _{ef}	[mm]	100	125	150	200	100	125	150	200
Non-cracked and cracked concrete											
T .	C20/25		[[]]	19.4	27.1	35.6	54.8	19.4	27.1	35.6	54.8
Tension	C50/60	N _{rec}	[kN]	30.6	42.8	56.3	82.9	30.6	42.8	56.3	86.6
Shear	≥ C20/25	V	[kN]	38.8	51.0	51.0	51.0	38.8	51.0	51.0	51.0

Material safety factor γ_M and safety factor for action $\gamma_L = 1.4$ are included. The material safety factor depends on the failure mode.

BONDED CONCRETE SCREW WIT-BS XL

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} \cdot f_{Rd,sp} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{b,N}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load $N_{\rm Rd,s}$ of a single anchor

Screw size: Ø 10 - Ø 12

Screw Size			Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth	h _{ef}	[mm]	80	90	100	110	100	110	120	130
Design steel resistance	N _{Rd,s}	[kN]	30.0	30.0	30.0	30.0	45.7	45.7	45.7	45.7

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size			Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/
			M16	M16	M16	M16	M18	M18	M18	M18
Effective anchorage depth	h _{ef}	[mm]	100	110	125	140	100	125	140	160
Design steel resistance	N _{Rd,s}	[kN]	64.3	64.3	64.3	64.3	73.3	<i>7</i> 3.3	73.3	73.3

Screw size: Ø 22/M20 - Ø 22/M24

Screw Size			Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24
Effective anchorage depth	h _{ef}	[mm]	100	125	150	200	100	125	150	200
Design steel resistance	N _{Rd,s}	[kN]	116.0	116.0	116.0	116.0	142.7	142.7	142.7	142.7

2. Design pullout resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$$

Table 2: Basic design resistance $N^0_{Rd,p}$ in case of pull-out failure of a single anchor

Screw size: Ø 10 - Ø 12

Screw Size			Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth	h _{ef}	[mm]	80	90	100	110	100	110	120	130
Non-cracked and cracked concrete										
Combined pull-out / breakout resistance	N ⁰ _{Rd,p}	[kN]	26.5	26.5	26.5	26.5	40.2	40.2	40.2	40.2

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size			Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/
			M16	M16	M16	M16	M18	M18	M18	M18
Effective anchorage depth	h _{ef}	[mm]	100	110	125	140	100	125	140	160
Non-cracked and cracked concre	te									
Combined pull-out / breakout resistance	N ⁰ _{Rd,p}	[kN]	44.9	44.9	44.9	44.9	54.9	54.9	54.9	54.9

Screw Size			Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24
Effective anchorage depth	h _{ef}	[mm]	100	125	150	200	100	125	150	200
Non-cracked and cracked concre	te									
Combined pull-out / breakout resistance	N _{Rd,p}	[kN]	76.7	76.7	76.7	76.7	76.7	76.7	76.7	76.7

BONDED CONCRETE SCREW WIT-BS XL

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance $N_{Rd,c}^0$ in case of concrete cone failure of a single anchor

Screw size: Ø 10 - Ø 12

Screw Size			Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12	
Effective anchorage depth	h _{ef}	[mm]	80	90	100	110	100	110	120	130	
Non-cracked and cracked concrete											
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	19.6	23.0	26.5	27.1	31.3	35.7	40.2	

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size			Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/
			M16	M16	M16	M16	M18	M18	M18	M18
Effective anchorage depth	h _{ef}	[mm]	100	110	125	140	100	125	140	160
Non-cracked and cracked concre	te									
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	27.1	31.3	37.9	44.9	27.1	37.9	44.9	54.9

	-											
Screw Size			Ø 22/									
			M20	M20	M20	M20	M24	M24	M24	M24		
Effective anchorage depth	h _{ef}	[mm]	100	125	150	200	100	125	150	200		
Non-cracked and cracked concrete												
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	27.1	37.9	49.8	76.7	27.1	37.9	49.8	76.7		

²⁾ strength at 28 days of 150 mm cubes

Table 5: Characteristic edge distance $c_{\scriptscriptstyle cr,N}$ and spacing $s_{\scriptscriptstyle cr,N}$

Screw size: Ø 10 – Ø 12

Screw Size			Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth	h _{ef}	[mm]	80	90	100	110	100	110	120	130
Spacing	S _{cr,N}	[mm]	240	270	300	330	300	330	360	390
Edge distance	C _{cr,N}	[mm]	120	135	150	165	150	165	180	195

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size			Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/
			M16	M16	M16	M16	M18	M18	M18	M18
Effective anchorage depth	h _{ef}	[mm]	100	110	125	140	100	125	140	160
Spacing	S _{cr,N}	[mm]	300	330	375	420	300	375	420	480
Edge distance	C _{cr,N}	[mm]	150	165	188	210	150	188	210	240

Screw size: Ø 22/M20 - Ø 22/M24

Screw Size			Ø 22/	Ø 22/	Ø 22/					
			M20	M20	M20	M20	M24	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	100	125	150	200	100	125	150	200
Spacing	S _{cr,N}	[mm]	300	375	450	600	300	3 <i>75</i>	450	600
Edge distance	C _{cr,N}	[mm]	150	188	225	300	150	188	225	300

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

		r																		
Number of fixing per	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
direction																				
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} , f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 8: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.43	0.65	0.40	0.70	0.72	0.75	0.70	0.00	0.83	0.05	000	0.85	0.88	0.95	0.98	1.00
f _{cy}	0.55	0.38	0.60	0.63	0.03	0.08	0.70	0./3	0./3	0./8	0.80	0.83	0.83	0.88	0.83	0.88	0.93	0.78	1.00

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_h$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 9: Design resistance $N^{\,0}_{_{Rd,sp}}$ in case of concrete splitting failure of a single anchor

Screw size: Ø 10 – Ø 12

Screw Size			Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12			
Effective anchorage depth	h _{ef}	[mm]	80	90	100	110	100	110	120	130			
Non-cracked and cracked concrete													
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	16.4	19.6	23.0	26.5	27.1	31.3	35.7	40.2			

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size			Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/			
			M16	M16	M16	M16	M18	M18	M18	M18			
Effective anchorage depth	h _{ef}	[mm]	100	110	125	140	100	125	140	160			
Non-cracked and cracked concrete													
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	27.1	31.3	37.9	44.9	27.1	37.9	44.9	54.9			

Screw size: Ø 22/M20 - Ø 22/M24

Screw Size			Ø 22/										
			M20	M20	M20	M20	M24	M24	M24	M24			
Effective anchorage depth	h _{ef}	[mm]	100	125	150	200	100	125	150	200			
Non-cracked and cracked concrete													
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	27.1	37.9	49.8	76.7	27.1	37.9	49.8	76.7			

Table 10: Characteristic edge distance $c_{\scriptscriptstyle {\it ct,sp}}$ and spacing $s_{\scriptscriptstyle {\it cr,sp}}$

Screw size: Ø 10 - Ø 12

Screw Size			Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth	h _{ef}	[mm]	80	90	100	110	100	110	120	130
Characteristic spacing	S _{cr,sp}	[mm]	320	360	400	440	400	440	480	520
Characteristic edge distance	C _{cr,sp}	[mm]	160	180	200	220	200	220	240	260
Minimum member thickness	h _{min}	[mm]	140	150	160	170	160	170	180	190

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size			Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/
			M16	M16	M16	M16	M18	M18	M18	M18
Effective anchorage depth	h _{ef}	[mm]	100	110	125	140	100	125	140	160
Characteristic spacing	S _{cr,sp}	[mm]	400	440	500	560	400	500	560	640
Characteristic edge distance	C cr,sp	[mm]	200	220	250	280	200	250	280	320
Minimum member thickness	h _{min}	[mm]	170	180	195	210	1 <i>7</i> 0	195	210	230

Screw size: Ø 22/M20 - Ø 22/M24

Screw Size			Ø 22/							
			M20	M20	M20	M20	M24	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	100	125	150	200	100	125	150	200
Characteristic spacing	S _{cr,sp}	[mm]	400	500	600	800	400	500	600	800
Characteristic edge distance	C _{cr,sp}	[mm]	200	250	300	400	200	250	300	400
Minimum member thickness	h _{min}	[mm]	200	225	250	300	200	225	250	300

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 13: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

 $\text{3. Concrete edge failure} \qquad V_{\textit{Rd,c}} = V_{\textit{Rd,c}}^{\textit{0}} \cdot f_{\textit{b,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$

1. Steel resistance

Table 15: Design value of steel resistance $V_{\rm Rd,s}$ of a single anchor

Screw size: Ø 10 - Ø 12

Screw Size			Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth	h _{ef}	[mm]	80	90	100	110	100	110	120	130
Design steel resistance	V _{Rd,s}	[kN]	22.7	22.7	22.7	22.7	28.0	28.0	28.0	28.0

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size			Ø 14/ M16	Ø 14/ M16	Ø 14/ M16	Ø 14/ M16	Ø 16/ M18	Ø 16/ M18	Ø 16/ M18	Ø 16/ M18
Effective anchorage depth	h _{ef}	[mm]	100	110	125	140	100	125	140	160
Design steel resistance	V _{Rd.s}	[kN]	42.7	42.7	42.7	42.7	64.0	64.0	64.0	64.0

Screw size: Ø 22/M20 - Ø 22/M24

Screw Size			Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M20	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24	Ø 22/ M24
Effective anchorage depth	h _{ef}	[mm]	100	125	150	200	100	125	150	200
Design steel resistance	V _{Rd,s}	[kN]	71.3	71.3	71.3	<i>7</i> 1.3	<i>7</i> 1.3	71.3	71.3	71.3

2. Concrete pry-out resistance

$$V_{Rd,c} = k_8 \cdot N_{Rd,c}$$

Table 16: factor k_g for calculating design pry-out resistance

Screw size: Ø 10 - Ø 12

Screw Size			Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth	h _{ef}	[mm]	80	90	100	110	100	110	120	130
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

Screw size: Ø 14/M16 - Ø 16/M18

Screw Size			Ø 14/		·	•		Ø 16/	•	
			M16	M16	M16	M16	M18	M18	M18	M18
Effective anchorage depth	h _{ef}	[mm]	100	110	125	140	100	125	140	160
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

Screw size: Ø 22/M20 - Ø 22/M24

Screw Size			22/ M20	22/ M20	22/ M20	22/ M20	22/ M24	22/ M24	22/ M24	22/ M24
Effective anchorage depth	h _{ef}	[mm]	100	125	150	200	100	125	150	200
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Concrete edge resistance

$$V_{\rm Rd,c} = V^0_{\rm Rd,c} \cdot f_{\rm b,V} \cdot f_{\rm s,V} \cdot f_{\rm c2,V} \cdot f_{\rm a} \cdot f_{\rm h}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V_{\rm Rd,c}^{\rm o}$ in case of concrete edge failure Screw size: Ø 10 – Ø 16/M18

Screw Size	Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12	Ø	Ø	Ø	Ø	Ø	Ø
									14/	14/	14/	14/	16/	16/
									M16	M16	M16	M16	M18	M18
h _{af} [mm]	80	90	100	110	100	110	120	130	100	110	125	140	100	125
61.1							Cracked	Concret	te					
Edge distance c,							V	70 Rd,c						
. 3								Kd,c						
40	2.5	2.5	2.6	2.7								l .		
45	2.9	3.0	3.0	3.1	_	_					_	_		_
50	3.3	3.4	3.5	3.5	3.6	3.7	3.8	3.9	-	_	_	_		_
55	3.7	3.8	3.9	4.0	4.1	4.2	4.2	4.3	_		_	_		-
60	4.2	4.3	4.4	4.5	4.5	4.6	4.7	4.8	4.7	4.8	4.9	5.1		_
65	4.6	4.7	4.9	5.0	5.0	5.1	5.2	5.3	5.2	5.3	5.5	5.6	_	
70	5.1	5.2	5.3	5.4	5.5	5.6	5.8	5.9	5.7	5.8	6.0	6.2	5.8	6.2
75	5.6	5.7	5.8	6.0	6.0	6.2	6.3	6.4	6.2	6.3	6.5	6.7	6.4	6.7
80	6.1	6.2	6.4	6.5	6.6	6.7	6.8	6.9	6.7	6.9	7.1	7.3	6.9	7.3
85	6.6	6.7	6.9	7.0	7.1	7.2	7.4	7.5	7.3	7.4	7.7	7.9	7.5	7.9
90	7.1	7.3	7.4	7.6	7.6	7.8	7.9	8.1	7.9	8.0	8.2	8.5	8.0	8.4
95	7.7	7.8	8.0	8.1	8.2	8.4	8.5	8.7	8.4	8.6	8.8	9.1	8.6	9.0
100	8.2	8.4	8.5	8.7	8.8	8.9	9.1	9.3	9.0	9.2	9.4	9.7	9.2	9.7
110	9.3	9.5	9.7	9.8	10.0	10.1	10.3	10.5	10.2	10.4	10.7	10.9	10.4	10.9
120	10.5	10.7	10.9	11.1	11.2	11.4	11.6	11.7	11.4	11.6	11.9	12.2	11.7	12.2
130	11.7	11.9	12.1	12.3	12.4	12.6	12.8	13.0	12.7	12.9	13.3	13.6	13.0	13.5
140	12.9	13.2	13.4	13.6	13.7	14.0	14.2	14.4	14.0	14.3	14.6	14.9	14.3	14.9
150	14.2	14.5	14.7	14.9	15.1	15.3	15.5	15.7	15.4	15.6	16.0	16.3	15.7	16.3
160	15.5	15.8	16.0	16.3	16.4	16.7	16.9	17.1	16.8	17.0	17.4	17.8	17.1	17.8
170	16.9	17.1	17.4	17.7	17.8	18.1	18.3	18.6	18.2	18.5	18.9	19.3	18.5	19.3
180	18.2	18.5	18.8	19.1	19.3	19.5	19.8	20.1	19.6	19.9	20.4	20.8	20.0	20.8
190	19.7	20.0	20.3	20.5	20.7	21.0	21.3	21.6	21.1	21.4	21.9	22.3	21.5	22.3
200	21.1	21.4	21.7	22.0	22.2	22.5	22.8	23.1	22.6	23.0	23.5	23.9	23.0	23.9
250	28.7	29.1	29.5	29.9	30.1	30.5	30.9	31.2	30.7	31.1	31.7	32.2	31.1	32.2
300	37.0	37.5	38.0	38.4	38.7	39.2	39.6	40.1	39.4	39.9	40.6	41.2	39.9	41.2
350	45.9	46.5	47.1	47.6	47.9	48.5	49.0	49.5	48.7	49.3	50.1	50.8	49.3	50.8
400	55.4	56.1	56.7	57.3	57.7	58.3	58.9	59.5	58.6	59.2	60.2	61.0	59.3	61.0
450	65.4	66.2	66.9	67.5	68.0	68.7	69.4	70.0	69.0	69.7	70.8	71.8	69.8	71.7
500	75.9	76.8	77.5	78.3	78.8	79.6	80.3	81.0	79.9	80.7	81.9	83.0	80.8	83.0
550	86.9	87.8	88.7	89.5	90.1	90.9	91.7	92.5	91.3	92.2	93.5	94.7	92.3	94.7
600	98.3	99.3	100.3	101.1	101.8	102.7	103.6	104.5	103.1	104.1	105.5	106.8	104.3	106.8
650	110.1	111.2	112.3	113.2	113.9	115.0	115.9	116.9	115.4	116.5	118.0	119.4	116.6	119.4
700	122.4	123.6	124.7	125.7	126.5	127.6	128.6	129.6	128.0	129.2	130.9	132.4	129.4	132.4
750	135.0	136.3	137.5	138.6	139.4	140.6	141.8	142.8	141.1	142.4	144.2	145.8	142.6	145.8
800	148.0	149.4	150.7	151.9	152.8	154.0	155.3	156.4	154.6	155.9	157.8	159.6	156.1	159.6
850	-	162.9	164.3	165.5	166.5	167.8	169.1	170.4	168.4	169.8	171.9	173.7	170.1	173.7
900	-	176.7	178.2	179.6	180.5	182.0	183.4	184.7	182.6	184.1	186.3	188.3	184.4	188.3
950	-	-	192.5	193.9	194.9	196.5	197.9	199.3	197.1	198. <i>7</i>	201.0	203.1	199.0	203.1
1000	-	-	207.1	208.6	209.7	211.3	212.9	214.3	212.0	213.7	216.1	218.3	214.0	218.3
1100	-	-	-	239.0	-	242.0	243.7	245.3	-	244.6	247.3	249.8	-	249.8
1200	-	-	-	-	-	-	275.8	277.5	-	-	279.7	282.4	-	282.4
1300	-	-	-	-	-	-	-	311.0	-	-	-	316.3	-	-
1400	-	-	-	-	-	-	-	-	-	-	-	351.4	-	-

Screw size: Ø 16/M18 - Ø 22/M24

Screw size: Ø 1	-			G 00 /	<i>a</i> 22 /	G 00/	<i>a</i> 22 /	Ø 00 /	Ø 00 /	<i>a</i> 22 /
Screw Size		_	_	_	-	Ø 22/	_	-	_	_
h _{ef} [mm]	M18	M18	M20	M20	M20		M24	M24	M24	M24
'' _{ef} [mm]	140	160	100	125	150	200		125	150	200
T.L. It.						Concrete	=			
Edge distance c ₁					V	/O Rd,c				
[mm]					[k	kN]				
70	6.3	6.6	-	-	-	-	-	-	-	-
75	6.9	7.2	-	-	-	-	-	-	-	-
80	7.5	7.8	7.3	7.7	8.2	8.9	7.3	7.7	8.2	8.9
85	8.1	8.4	7.9	8.4	8.8	9.6	7.9	8.4	8.8	9.6
90	8.7	9.0	8.5	9.0	9.4	10.2	8.5	9.0	9.4	10.2
95	9.3	9.6	9.1	9.6	10.1	10.9	9.1	9.6	10.1	10.9
100	9.9	10.2	9.7	10.2	10. <i>7</i>	11.6	9.7	10.2	10.7	11.6
110	11.2	11.5	11.0	11.5	12.1	13.0	11.0	11.5	12.1	13.0
120	12.5	12.9	12.3	12.9	13.5	14.5	12.3	12.9	13.5	14.5
130	13.9	14.3	13.6	14.3	14.9	16.0	13.6	14.3	14.9	16.0
140	15.3	15.7	15.0	1 <i>5.7</i>	16.3	17.5	15.0	15.7	16.3	17.5
150	16.7	1 <i>7</i> .1	16.4	17.2	17.8	19.1	16.4	17.2	17.8	19.1
160	18.2	18.6	17.9	18. <i>7</i>	19.4	20.7	17.9	18. <i>7</i>	19.4	20.7
170	19.7	20.2	19.3	20.2	21.0	22.3	19.3	20.2	21.0	22.3
180	21.2	21.7	20.9	21.7	22.6	24.0	20.9	21.7	22.6	24.0
190	22.8	23.3	22.4	23.3	24.2	25.7	22.4	23.3	24.2	25.7
200	24.4	25.0	24.0	25.0	25.9	27.5	24.0	25.0	25.9	27.5
250	32.8	33.5	32.3	33.5	34.6	36.6	32.3	33.5	34.6	36.6
300	41.9	42.8	41.4	42.8	44.1	46.4	41.4	42.8	44.1	46.4
350	51.6	52.6	51.0	52.7	54.2	56.9	51.0	52.7	54.2	56.9
400	61.9	63.1	61.2	63.2	64.9	67.9	61.2	63.2	64.9	67.9
450	72.8	74.1	72.0	74.1	76.1	79.4	72.0	74.1	76.1	79.4
500	84.1	85.5	83.3	85.6	87.8	91.5	83.3	85.6	87.8	91.5
550	95.9	97.5	95.0	97.6	100.0	104.1	95.0	97.6	100.0	104.1
600	108.2	109.9	107.2	110.1	112.6	117.1	107.2	110.1	112.6	11 <i>7</i> .1
650	120.9	122.8	119.8	122.9	125.7	130.5	119.8	122.9	125.7	130.5
700	134.0	136.0	132.9	136.2	139.2	144.4	132.9	136.2	139.2	144.4
750	147.5	149.7	146.3	149.9	153.1	158.6	146.3	149.9	153.1	158.6
800	161.4	163.7	160.1	164.0	167.4	173.3	160.1	164.0	167.4	173.3
850	175.7	178.2	174.3	178.4	182.0	188.3	174.3	178.4	182.0	188.3
900	190.4	193.0	188.9	193.2	197.1	203.7	188.9	193.2	197.1	203.7
950	205.4	208.1	203.8	208.4	212.5	219.5	203.8	208.4	212.5	219.5
1000	220.7	223.6	219.1	223.9	228.2	235.6	219.1	223.9	228.2	235.6
1100	252.4	255.5	250.6	255.9	260.6	268.8	250.6	255.9	260.6	268.8
1200	285.3	288.8	283.3	289.2	294.4	303.3	283.3	289.2	294.4	303.3
1300	319.4	323.2	317.3	323.7	329.3	339.0	317.3	323.7	329.3	339.0
1400	354.7	358.8	_	-	365.5	375.9	-	_	365.5	375.9
1500	-	395.6	_	_	402.7	413.9	_	_	402.7	413.9
1600	_	433.4	_	_		453.0	_	_	-	453.0
1700	_		_	_	_	493.2	_	_	_	493.2
1800		_	_	_	_	534.4	_	_	_	534.4
1900	-	-	-	-	-	576.6	-	-	-	576.6
2000	-	-	-	-	_	619.8	-	-	_	619.8
2000						017.0				017.0

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load.

The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

s/ c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of edge distance

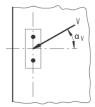
$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1.00	1.10	1.20	1.30	1.40	1.50
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

¹⁾ Distance to the second edge: $c_1 \le c_2$

²⁾ strength at 28 days of 150 mm cubes


d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)		10								
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	≥ 1.50
f _{h.V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Fd} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Mechanical characteristics

Screw size: Ø 10 - Ø 12

Screw size			Ø 10	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 12	Ø 12
Effective anchorage depth	h _{ef}	[mm]	80	90	100	110	100	110	120	130
Stressed cross section of threaded part										
Stressed cross section	A _s	[mm ²]	65.0	65.0	65.0	65.0	96.8	96.8	96.8	96.8
Section modulus	W	[mm ³]	74.0	74.0	74.0	74.0	134.3	134.3	134.3	134.3
Yield strength	fy	[N/mm ²]	640	640	640	640	640	640	640	640
Tensile strength	f	[N/mm²]	800	800	800	800	800	800	800	800
Characteristic bending moment	M ^O _{Rk,s}	[Nm]	56.0	56.0	56.0	56.0	123.0	123.0	123.0	123.0
Partial factor tension direction	γ_{Ms}	[-]	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
Partial factor shear direction	γ_{Ms}	[-]	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Design bending moment	M ⁰ _{Rd,s}	[Nm]	3 <i>7</i> .3	3 <i>7</i> .3	3 <i>7</i> .3	3 <i>7</i> .3	82.0	82.0	82.0	82.0

Screw size: Ø 14/M16 - Ø 16/M18

Screw size			Ø 14/	Ø 14/	Ø 14/	Ø 14/	Ø 16/	Ø 16/	Ø 16/	Ø 16/
			M16	M16	M16	M16	M18	M18	M18	M18
Effective anchorage depth	h _{ef}	[mm]	100	110	125	140	100	125	140	160
Stressed cross section of threaded part										
Stressed cross section	A _s	[mm ²]	134.8	134.8	134.8	134.8	172.0	172.0	172.0	172.0
Section modulus	W	[mm³]	220.7	220.7	220.7	220.7	318.3	318.3	318.3	318.3
Yield strength	f _y	[N/mm²]	640	640	640	640	640	640	640	640
Tensile strength	f	[N/mm²]	800	800	800	800	800	800	800	800
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	200.0	200.0	200.0	200.0	347.0	347.0	347.0	347.0
Partial factor tension direction	γ_{Ms}	[-]	1.40	1.40	1.40	1.40	1.50	1.50	1.50	1.50
Partial factor shear direction	γ_{Ms}	[-]	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Design bending moment	M ⁰ _{Rd,s}	[Nm]	133.3	133.3	133.3	133.3	231.3	231.3	231.3	231.3

Screw size: Ø 22/M20 - Ø 22/M24

Screw size			Ø 22/							
			M20	M20	M20	M20	M24	M24	M24	M24
Effective anchorage depth	h _{ef}	[mm]	100	125	150	200	100	125	150	200
Stressed cross section of threaded part										
Stressed cross section	A _s	[mm ²]	330.1	330.1	330.1	330.1	330.1	330.1	330.1	330.1
Section modulus	W	[mm ³]	845.8	845.8	845.8	845.8	845.8	845.8	845.8	845.8
Yield strength	f _y	[N/mm²]	640	640	640	640	640	640	640	640
Tensile strength	f	[N/mm²]	800	800	800	800	800	800	800	800
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	730.0	730.0	730.0	730.0	730.0	730.0	730.0	730.0
Partial factor tension direction	γ_{Ms}	[-]	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Partial factor shear direction	γ_{Ms}	[-]	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Design bending moment	M ⁰ _{Rd,s}	[Nm]	486.7	486.7	486.7	486.7	486.7	486.7	486.7	486.7

Material specifications

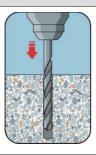
Product name	Material
W-BS/S	- Steel EN 10263-4: 2018 galvanized acc. to EN ISO 4042:2018-11
W-D3/3	- Zinc flake coating according to EN ISO 10683:2018-11 (≥ 5 μm)
W-BS/A4	1.4401; 1.4404; 1.4571; 1.4578
W-BS/HCR	1.4529

Working and curing times

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
-5°C to -1°C	60 min	360 min
0°C to 4°C	60 min	180 min
5°C to 9°C	60 min	120 min
10°C to 19°C	45 min	80 min
20°C to 29°C	15 min	45 min
30°C to 34°C	5 min	25 min
≥ 35°C	4 min	20 min

¹⁾ for wet base material the curing time must be doubled

Installation parameters


Screw type: W-BS XL, Ø 10 – Ø 22

Screw size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 22
Effective anchorage depth	h _{ef,min}	[mm]	80	100	100	100	100
Nominal drill hole diameter	d _o	[mm]	10	12	14	16	22
Drill cuting diameter	d _{cut} ≤	[mm]	10.45	12.5	14.5	16.5	22.55
Drill-hole depth	h _o ≥	[mm]	80	100	100	100	100
Diameter of steel brush	d _b ≥	[mm]	11	13	15	18	24
Diameter of clearance in hole	d _f ≤	[mm]	14	16	18	20	26
Maximum torque moment	T _{inst} ≤	[Nm]	40	60	80	100	200
Tangential impact wrench		[Nm]	Max. Nom	inal torque acc	ording to the r	nanufacturer's	information
,			400	650	650	650	1000
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	- 60	h _{ef} +	- <i>7</i> 0	h _{ef} + 100
Minimum spacing	S _{min}	[mm]	40	50	60	70	80
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80

Installation instructions

A) Bore hole drilling

1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. Proceed with Step B1.

1b. Hollow drill bit system (HDB)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. This drilling system removes the dust and cleans the bore hole during drilling. Proceed with Step C.

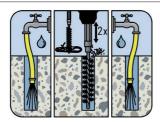
1c. Diamond drilling (DD)

Drill with diamond drill a hole into the base material to the size and embedment depth required by the selected anchor. Proceed with Step B2. In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

B1) Bore hole cleaning

CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in non-cracked and cracked concrete

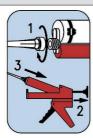

- 2a. Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump.
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of <u>four</u> times. If the bore hole ground is not reached with the brush, a brush extension shall be used. Cleaning with a brush attached to a drilling machine or battery screwdriver is also possible.
- **2c.** Finally blow the hole clean again with a hand pump.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

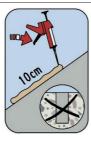
B2) Bore hole cleaning

SPCAC: Cleaning for dry, wet and water-filled bore holes for all diameters in non-cracked concrete

- 2a. Rinsing with water until clear water comes out.
- **2b.** Check the brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.
- **2c.** Rinsing again with water until clear water comes out.



- 2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.
- 2b. Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used. Cleaning with a brush attached to a drilling machine or battery screwdriver is also possible.
- **2c.** Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

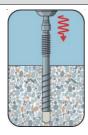

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

3b.

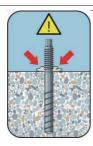
C) Preparation of bar and cartridge

Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used.

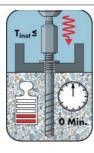
Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components.

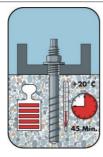


D) Filling the bore hole



4. Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/working times.


E) Setting the Screw (Pre-positioned) or F) for Push-through


5a. Screw in the concrete screw using a tangential impact wrench. Note the nominal torque of the tangential impact wrench.

5b. After reaching the screw-in depth, the composite mortar must emerge on the concrete surface.

5c. The attachment can be installed immediately. The concrete screw can be loaded immediately with the design load.

After the full curing time has been reached, the concrete screw may be loaded with the maximum design load. The curing time must be observed accordingly.

5d.

F) Setting the Screw (Push-through installation)		
	5a.	Screw in the concrete screw using a tangential impact wrench. Note the nominal torque of the tangential impact wrench.
	5b.	After reaching the screw-in depth, the composite mortar must emerge on the concrete surface
SQ TO Min.	5c.	The attachment can be installed immediately. The concrete screw can be loaded immediately with the design load.
+20° ¢	5d.	After the full curing time has been reached, the concrete screw may be loaded with the maximum design load. The curing time must be observed accordingly.

Filling Quantity

Screw type: W-BS XL, Ø 10 – Ø 22

Screw size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 22
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22
Drill depth	h _o / h ₁	[mm]			= h _{ef}		
Filling volume per 10 mm embedment depth		[ml]	0.09	0.11	0.12	0.14	0.31

Assumed waste of 15 % included.

280 ml

420 ml

825 ml

Galvanized (5 microns): M8 - M30

Stainless steel - A4 (AISI 316): M8 - M30

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridge	e sizes	Art. no.
280 ml	peeler	5918 504 280
420 ml	coaxial	5918 500 420
825 ml	side-by-side	5918 503 825

Type of installation		
Pre-positioned	In-place	Stand-off
√	1	1

Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
✓	1	1

Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	-	✓

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	EAD 330499-01-0601	ETA-17/0127, 13.11.2020
ICC-ES Evaluation Report	ICC	AC 308	ESR-4466, 01.10.2019
Fire resistance	Ingenieurbüro Thiele	TR 020	210807, 09.02.2018
LEED	eurofins		16.03.17
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 1104875A	16.03.17
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Anchor material, as specified in the tables, steel grade 5.8

- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, f_{ck} = 60 N/mm²
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characterstic resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h_{ef}	[mm]	80	90	110	125	170	210	240	270
Non-crack	Non-cracked concrete										
Tension	C20/25	NI	[[.k.]]	18.3	29.0	42.2	68.8	109.0	149.7	182.9	218.2
	C50/60	N_{Rk}	[kN]	18.3	29.0	42.2	78.5	122.5	176.5	229.5	280.5
Shear	≥ C20/25	V_{Rk}	[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Cracked c	oncrete										
Tension	C20/25	NI	[LVI]	14.1	21.2	33.2	48.1	76.3	104.8	128.0	152.8
	C50/60	N_{Rk}	k [kN]	15.5	23.3	36.5	62.2	99.9	121.9	156.8	195.9
Shear	≥ C20/25	V_{Rk}	[kN]	11.0	17.4	25.3	47.1	73.5	105.9	137.7	168.3

Design resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective and depth	horage	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-crack	Non-cracked concrete										
Tension	C20/25	N		12.2	19.3	28.1	45.8	72.7	99.8	121.9	145.5
	C50/60	N _{Rd}	[kN]	12.2	19.3	28.1	52.3	81. <i>7</i>	117.7	153.0	187.0
Shear	≥ C20/25	V_{Rd}	[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Cracked c	oncrete										
Tension	C20/25	NI	[LVI]	9.4	14.1	22.1	32.1	50.9	69.9	85.4	101.8
	C50/60	N _{Rd}	I _{Rd} [kN]	10.3	15.6	24.3	41.5	66.6	81.3	104.5	130.6
Shear	≥ C20/25	V _{Rd}	[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6

Recommended/ allowable loads 1)

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-crac	ked concrete	•									
Tension	C20/25	NI	[LVI]	8.7	13.8	20.1	32.7	51.9	71.3	87.1	103.9
	C50/60	N _{rec}	N _{rec} [kN]	8.7	13.8	20.1	37.4	58.3	84.0	109.3	133.6
Shear	≥ C20/25	V	[kN]	6.3	9.9	14.5	26.9	42.0	60.5	78.7	96.2
Cracked o	oncrete										
Tension	C20/25	N	[LVI]	6.7	10.1	15.8	22.9	36.3	49.9	61.0	72.7
	C50/60	N _{rec}	N _{rec} [kN]	7.4	11.1	17.4	29.6	47.6	58.1	74.6	93.3
Shear	≥ C20/25	V	[kN]	6.3	9.9	14.5	26.9	42.0	60.5	78.7	96.2

 $^{^{1)}}$ Material safety factor $\gamma_{\rm M}$ and safety factor for action $\gamma_{\rm L}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Anchor material according to specifications, steel grade 5.8 unless otherwise stated in the tables

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{\rm Rds}$

2. Pull-out failure $N_{Rdp} = N_{Rdp}^0 \cdot f_{bN} \cdot f_{hef} \cdot f_{sxp} \cdot f_{sxp} \cdot f_{cx1p} \cdot f_{cx2p} \cdot f_{cyp} \cdot f_{sus}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{bef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{sy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Design steel resistance	5.8	N _{Rd,s}		12.2	19.3	28.1	52.3	81. <i>7</i>	117.7	153.0	18 <i>7</i> .0
	8.8	N _{Rd,s}	[kN]	19.3	30.7	44.7	83.3	130.7	188.0	245.3	299.3
	A4	N _{Rd,s}		13.9	21.9	31.6	58.8	91.4	132.1	80.4	98.3

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance N_{old}^0 in case of combined pull-out and concrete cone failure of a single anchor

Rd,p										
Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete										
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	22.8	32.0	44.2	62.8	99.7	137.2	176.4	220.5
Cracked concrete										
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	9.4	14.1	22.1	37.7	60.5	73.9	95.0	118.8

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$
 • $c_{cr,p} = s_{cr,p}/2$

Where $\tau_{_{\it Rk}}$ is the value $\tau_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{c,p}$ and spacing $s_{c,p}$ ($f_{sus}=1$)

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,p}	[mm]	240	270	330	375	510	630	<i>7</i> 11	790
Edge distance	C _{cr,p}	[mm]	120	135	165	188	255	315	355	395

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

 $^{^{1\!\}mathrm{J}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, \, typ}}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,p, f sy,p	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,p, f sy,p	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,p}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
f _{cy, p}																			

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 $N_{sus,d}$ = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

	a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
1	f sus	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance N_{Rdc}° in case of concrete cone failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	23.5	28.0	37.8	45.8	72.7	99.8	121.9	145.5
Cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	19.6	26.5	32.1	50.9	69.9	85.4	101.8

Table 9: Characteristic edge distance $c_{cr,N}$ and spacing $s_{cr,N}$

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,N}	[mm]	240	270	330	375	510	630	720	810
Edge distance	C _{cr,N}	[mm]	120	135	165	188	255	315	360	405

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef}$$
 and $c_{cr,N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.24	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef, typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 12: Influence of edge distance on concrete cone resistance

			-																
c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.42	0.65	0.40	0.70	0.72	0.75	0.70	0.00	0.03	0.05	0.88	0.85	0.88	0.95	0.98	1.00
f _{cv}	0.55	0.56	0.60	0.03	0.63	0.08	0.70	0.73	0.73	0.78	0.80	0.63	0.63	0.00	0.63	0.00	0.93	0.96	1.00

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_$$

Table 13: Design resistance $N_{pd,m}^{\circ}$ in case of concrete splitting failure of a single anchor

Kd,sp										
Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,sp}	[kN]	22.8	28.0	37.8	45.8	72.7	99.8	121.9	145.5

Table 14: Characteristic edge distance c and spacing s

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	S _{cr,sp}	[mm]	360	420	528	600	816	1008	1152	1296
Edge distance	C _{cr,sp}	[mm]	180	210	264	300	408	504	576	648
Minimum member thickness	h _{min}	[mm]	110	120	140	161	214	266	300	340

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and \boldsymbol{h}_{\min} according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1$$
 $f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,c}, N_{Rd,c}\}$

 $\textbf{3. Concrete edge failure} \qquad V_{\textit{Rd,c}} = V_{\textit{Rd,c}}^{\textit{0}} \cdot f_{\textit{b,V}} \cdot f_{\textit{hef,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c1,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{pd} of a single anchor

Thread size			10,5	M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
	5.8			8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Design steel resistance	8.8	V _{Rd,s}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	1 <i>7</i> 9.2
	A4			8.3	12.8	19.2	35.3	55.1	<i>7</i> 9.5	48.3	58.8

2. Design concrete pry-out resistance

$$V_{\scriptscriptstyle Rd,c} = k_{\scriptscriptstyle g} \cdot \min \left\{ N_{\scriptscriptstyle Rd,p}; N_{\scriptscriptstyle Rd,c} \right\}$$

Table 20: factor k_g for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\mathrm{Rd,c}} = \ V_{\mathrm{Rd,c}}^0 \cdot f_{\mathrm{b,V}} \cdot f_{\mathrm{hef,V}} \cdot f_{\mathrm{s,V}} \cdot f_{\mathrm{c1,V}} \cdot f_{\mathrm{c2,V}} \cdot f_{\mathrm{a}} \cdot f_{\mathrm{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance $V_{o,i}^0$ in case of concrete edge failure

Table 21: Besign resistance V Rd,c III case c		ore eage								
Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete										
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.8	3.6	4.6	5.8	8.3	10.3	13.1	15.2
Cracked concrete										
Basic design edge resistance	V O Rd,c	[kN]	2.0	2.5	3.2	4.1	5.9	<i>7</i> .3	9.3	10.7

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

		,	_		_												
s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

d. Influence of edge distance c,

Table 25: Influence of edge distance c, on concrete edge resistance

c _{1/d}	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

²⁾ strength at 28 days of 150 mm cubes

e. Influence of edge distance c,

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c, on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c_1 \le c_2$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For a \geq 90° the component of the shear load acting away from the edge may be neglected and the verification may be done with parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

ı	h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
1	h,V	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$\left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1$ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature		
Temperature range I	- 40°C to +40°C	+24°C	+40°C		
Temperature range II	- 40°C to +80°C	+50°C	+80°C		
Temperature range III	- 40°C to +120°C	+72°C	+120°C		
Temperature range IV	- 40°C to +160°C	+100°C	+160°C		

Service temperature for working life of 100 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature		
Temperature range I	- 40°C to +40°C	+24°C	+40°C		
Temperature range II	- 40°C to +80°C	+50°C	+80°C		

Working life of 50 years

1- Non-cracked concrete

Thread size	Thread size					M12	M16	M20	M24	M27	M30
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of m	anual air cl	eaning (N	1AC)			
Temperature range I	Dry and		F	9.4	9.4	8.9	8.3				
Temperature range II				9.4	9.4	8.9	8.3	N.	No performance assessed		
Temperature range III	wet con- crete	τ _{Rd,ucr}	[N/mm²]	8.3	7.8	7.8	7.2	IN			
Temperature range IV				6.7	6.1	6.1	5.6				
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of co	ompressed o	air cleanir	g (CAC)			
Temperature range I				11.3	11.3	10.7	10.0	9.3	8.7	8.7	8. <i>7</i>
Temperature range II	Dry and	$ au_{ m Rd,ucr}$		11.3	11.3	10.7	10.0	9.3	8.7	8.7	8.7
Temperature range III	wet con- crete			10.0	9.3	9.3	8.7	8.0	8.0	7.3	7.3
Temperature range IV				8.0	<i>7</i> .3	7.3	6.7	6.3	6.0	6.0	6.0
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of ho	ollow drill b	it system (HDB)			
Temperature range I		T _{Rd,ucr}		9.4	9.4	8.9	8.3	7.8	7.2	7.2	7.2
Temperature range II	Dry and			9.4	9.4	8.9	8.3	7.8	7.2	7.2	7.2
Temperature range III	wet con- crete			8.3	7.8	7.8	7.2	6.7	6.7	6.1	6.1
Temperature range IV				6.7	6.1	6.1	5.6	5.3	5.0	5.0	5.0
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of co	ompressed o	air cleanir	g (CAC)			
Temperature range l				8.1	8.1	7.6	<i>7</i> .1	6.7	6.2	6.2	6.2
Temperature range II	Flooded	_	[N/mm²]	8.1	8.1	7.6	<i>7</i> .1	6.7	6.2	6.2	6.2
Temperature range III	bore hole	τ _{Rd,ucr}		<i>7</i> .1	6.7	6.7	6.2	5.7	5.7	5.2	5.2
Temperature range IV				5.7	5.2	5.2	4.8	4.5	4.3	4.3	4.3

2- Cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of m	anual air cl	eaning (N	1AC)			
Temperature range I				3.9	4.2	4.4	5.0				
Temperature range II	Dry and			3.9	4.2	4.4	5.0	N			
Temperature range III	wet con- crete	τ _{Rd,ucr}	[N/mm²]	3.3	3.6	3.9	4.2	No performance assessed			
Temperature range IV				3.1	3.1	3.3	3.6				
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of co	ompressed o	air cleanin	g (CAC)			
Temperature range I				4.7	5.0	5.3	6.0	5.7	4.7	4.7	4.7
Temperature range II	Dry and wet con-	$ au_{Rd,ucr}$	[N/mm²]	4.7	5.0	5.3	6.0	5.7	4.7	4.7	4.7
Temperature range III	crete			4.0	4.3	4.7	5.0	4.7	4.0	4.0	4.0
Temperature range IV				3.7	3.7	4.0	4.3	4.0	3.7	3.7	3.7
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of h	ollow drill b	it system (HDB)			
Temperature range I		$ au_{ ext{Rd,ucr}}$	[N/mm²]	3.9	4.2	4.4	5.0	4.7	3.9	3.9	3.9
Temperature range II	Dry and wet con-			3.9	4.2	4.4	5.0	4.7	3.9	3.9	3.9
Temperature range III	crete			3.3	3.6	3.9	4.2	3.9	3.3	3.3	3.3
Temperature range IV				3.1	3.1	3.3	3.6	3.3	3.1	3.1	3.1
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in case of co	ompressed o	air cleanin	g (CAC)			
Temperature range I				3.3	3.6	3.8	4.3	4.0	3.3	3.3	3.3
Temperature range II	Flooded			3.3	3.6	3.8	4.3	4.0	3.3	3.3	3.3
Temperature range III	bore hole	τ _{Rd,ucr}		2.9	3.1	3.3	3.6	3.3	2.9	2.9	2.9
Temperature range IV				2.6	2.6	2.9	3.1	2.9	2.6	2.6	2.6

Working life of 100 years

1- Non-cracked concrete

Thread size	Thread size				M10	M12	M16	M20	M24	M27	M30
Design bond re	esistance in	non-cracke	d concrete	C20/25 i	in case of m	anual air cle	eaning (M	IAC)			
Temperature range l	Dry and		[N1/ 2]	9.4	9.4	8.9	8.3		N		
Temperature range II	wet con- crete	τ _{Rd,ucr100}	[N/mm ²]	9.4	9.4	8.9	8.3	No performance assessed			ed
Design bond re	esistance in	non-cracke	d concrete	C20/25 i	in case of co	mpressed c	ir cleanin	g (CAC)			
Temperature range l	Dry and	_	[N1/2]	11.3	11.3	10.7	10.0	9.3	8.7	8.7	8.7
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm ²]	11.3	11.3	10.7	10.0	9.3	8.7	8.7	8.7
Design bond re	esistance in	non-cracke	d concrete	C20/25 i	in case of ho	llow drill bi	t system (l	HDB)			
Temperature range l	Dry and		FN 1 / 27	9.4	9.4	8.9	8.3	7.8	7.2	7.2	7.2
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm ²]	9.4	9.4	8.9	8.3	7.8	7.2	7.2	7.2
Design bond re	esistance in	n non-cracked concrete C20			in case of co	mpressed c	ir cleanin	g (CAC)			
Temperature range l	Flooded		[N.L./ 2]	8.1	8.1	7.6	<i>7</i> .1	6.7	6.2	6.2	6.2
Temperature range II	bore hole	τ _{Rd,ucr100}	[N/mm ²]	8.1	8.1	7.6	<i>7</i> .1	6.7	6.2	6.2	6.2

Thread size	ad size				M10	M12	M16	M20	M24	M27	M30
Design bond re	esistance in	non-cracke	d concrete (C20/25 i	n case of mo	anual air cle	eaning (M	AC)			
Temperature range l	Dry and	_	[N1/ 2]	3.1	3.3	3.6	3.6	N.	N		
Temperature range II	wet con- crete	τ _{Rd,ucr100}	[N/mm²]	3.1	3.3	3.6	3.6	No performance assessed			·a
Design bond re	esistance in	non-cracke	d concrete (C20/25 i	n case of co	mpressed a	ir cleanin	g (CAC)			
Temperature range l	Dry and	_	[N1/2]	3.7	4.0	4.3	4.3	4.3	4.3	4.3	4.3
Temperature range II	crete	τ _{Rd,ucr100}	[N/mm²]	3.7	4.0	4.3	4.3	4.3	4.3	4.3	4.3
Design bond re	esistance in	non-cracke	d concrete (C20/25 i	n case of ho	llow drill bit	t system (ł	HDB)			
Temperature range l	Dry and		[b] / 2]	3.1	3.3	3.6	3.6	3.6	3.6	3.6	3.6
Temperature range II	wet con- crete	τ _{Rd,ucr100}	[N/mm²]	3.1	3.3	3.6	3.6	3.6	3.6	3.6	3.6
Design bond re	esistance in	non-cracke	d concrete (C20/25 i	n case of co	mpressed a	ir cleanin	g (CAC)			
Temperature range l	Flooded	T.		2.6	2.9	3.1	3.1	3.1	3.1	3.1	3.1
Temperature range II	bore hole	T _{Rd,ucr100}	[N/mm ²]	2.6	2.9	3.1	3.1	3.1	3.1	3.1	3.1

Reduction factors

Working life of 50 years

1-Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30	
Reduction facto	or for non-crac	ked cor	ncrete C20/	25 in cas	e of manual	air cleaning	(MAC)					
Temperature range I				1.00	1.00	1.00	1.00					
Temperature range II	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	N.	r	1.00 1.00 1.00 0.92 0.85 0.69 0.69 1.00 1.00 0.92 0.85 0.69 0.69		
Temperature range III	wet con- crete	τ _{Rd,ucr}	[N/mm²]	0.88	0.82	0.88	0.87	No performance assessed			ea	
Temperature range IV				0.71	0.65	0.69	0.67					
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of compre	ssed air cle	aning (CA	C)				
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Dry and		[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range III	wet con- crete	τ _{Rd,ucr}	[14/mm-]	0.88	0.82	0.88	0.87	0.86	0.92	0.85	0.85	
Temperature range IV				0.71	0.65	0.69	0.67	0.68	0.69	0.69	0.69	
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of hollow	drill bit syste	m (HDB)					
Temperature range I				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Dry and		[h] / 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range III	wet con- crete	τ _{Rd,ucr}	[N/mm²]	0.88	0.82	0.88	0.87	0.86	0.92	0.85	0.85	
Temperature range IV				0.71	0.65	0.69	0.67	0.68	0.69	0.69	0.69	
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of compre	ssed air cle	aning (CA	C)				
Temperature range I				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Flooded	Flooded	[N1/2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range III	bore hole $\tau_{\text{Rd,ucr}}$	[N/mm²]	0.88	0.82	0.88	0.87	0.86	0.92	0.85	0.85		
Temperature range IV			0.71	0.65	0.69	0.67	0.68	0.69	0.69	0.69		

Thread size				M8	M10	M12	M16	M20	M24	M27	M30	
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of manual	air cleaning	(MAC)					
Temperature range l				1.00	1.00	1.00	1.00					
Temperature range II	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	N.	r			
Temperature range III	wet con- crete	T _{Rd,ucr}	[N/mm ²]	0.86	0.87	0.88	0.83	No performance assessed			ea	
Temperature range IV				0.79	0.73	0.75	0.72					
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of compre	ssed air cle	aning (CA	(C)				
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Dry and	_	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range III	wet con- crete	T _{Rd,ucr}	[IN/mm]	0.86	0.87	0.88	0.83	0.82	0.86	0.86	0.86	
Temperature range IV				0.79	0.73	0.75	0.72	0.71	0.79	0.79	0.79	
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of hollow	drill bit syste	m (HDB)					
Temperature range I				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Dry and	_	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range III	wet con- crete	T _{Rd,ucr}	[IN/mm ⁻]	0.86	0.87	0.88	0.83	0.82	0.86	0.86	0.86	
Temperature range IV				0.79	0.73	0.75	0.72	0.71	0.79	0.79	0.79	
Reduction facto	or for non-crac	ked cor	crete C20/	25 in cas	e of compre	ssed air cle	aning (CA	(C)				
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Flooded bore hole $ au_{ ext{Rd,ucr}}$	[N] /e 21	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range III		[N/mm ²]	0.86	0.87	0.88	0.83	0.82	0.86	0.86	0.86		
Temperature range IV			0.79	0.73	0.75	0.72	0.71	0.79	0.79	0.79		

Working life of 100 years

1- Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Reduction facto	or for non-cr	racked con	crete C20/2	25 in case	of manual	air cleaning	(MAC)				
Temperature range I	Dry and	_	[N/mm²]	1.00	1.00	1.00	1.00	No performance assessed			
Temperature range II	crete	T _{Rd,ucr100}	[14/11111]	1.00	1.00	1.00	1.00	INC	ia .		
Reduction facto	or for non-cr	racked con	crete C20/2	25 in case	of compres	sed air clec	ining (CA	C)			
Temperature range I	Dry and	_	[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduction facto	or for non-cr	racked con	crete C20/2	25 in case	of hollow d	Irill bit syste	m (HDB)				
Temperature range I	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduction facto	or for non-cr	racked con	crete C20/2	25 in case	of compres	sed air clec	ining (CA	C)			
Temperature range I	Flooded	_	[N1/mm2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	hole	T _{Rd,ucr100}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Reduction facto	or for non-c	racked con	crete C20/2	25 in case	of manual	air cleaning	(MAC)				
Temperature range I	Dry and		[N/mm²]	1.00	1.00	1.00	1.00	Na			٦
Temperature range II	crete	τ _{Rd,ucr100}	[14/11111]	1.00	1.00	1.00	1.00	140	periorinar	nce assessed	
Reduction facto	or for non-c	racked con	crete C20/2	25 in case	of compres	sed air clea	ining (CAC	C)			
Temperature range I	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet con- crete	T _{Rd,ucr100}	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduction facto	or for non-c	racked con	crete C20/2	25 in case	of hollow d	lrill bit syste	m (HDB)				
Temperature range I	Dry and		[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet con- crete	τ _{Rd,ucr100}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduction facto	luction factor for non-cracked concrete C20/25 in case of compressed air cleaning (CAC)										
Temperature range I	Flooded bore	_	[N1/mm21	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	hole	T _{Rd,ucr100}	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Mechanical characteristics

Steel grade	Thread size			М8	M10	M12	M16	M20	M24	M27	M30
	Stressed cross section	A,	[mm ²]	37	58	84	157	245	352	459	561
	Section modulus	W	[mm ³]	31	62	109	277	541	935	1387	1874
	Yield strength	f	[N/mm ²]	240	240	240	240	240	240	240	240
4.6	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	9.0	18.0	31.1	79.6	1 <i>55.7</i>	268.9	398.8	538.9
	Yield strength	f	[N/mm ²]	320	320	320	320	320	320	320	320
4.8	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	12.0	24.0	41.6	106.4	208.0	359.2	532.8	720.0
	Yield strength	f	[N/mm ²]	300	300	300	300	300	300	300	300
5.6	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M _{Rd,s}	[Nm]	11.4	22.2	38.9	99.4	194.0	335.3	498.8	672.5
	Yield strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
5.8	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M ^o _{Rd,s}	[Nm]	15.2	29.6	52	132.8	259.2	448	666.4	898.4
	Yield strength	f	[N/mm ²]	640	640	640	640	640	640	640	640
	Tensile strength	f	[N/mm ²]	800	800	800	800	800	800	800	800
8.8	Design bending moment	M _{Rd,s}	[Nm]	24.0	48.0	84.0	212.8	415.2	716.8	1066.4	1437.6
	Yield strength	f	[N/mm ²]	210	210	210	210	210	210	210	210
A4-50	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
A4-30	Design bending moment	M _{Rd,s}	[Nm]	8.0	15.5	27.7	70.2	136.6	235.7	349.6	472.7
	Yield strength	f	[N/mm ²]	450	450	450	450	450	450	-	-
A4-70	Tensile strength	f	[N/mm ²]	700	700	700	700	700	700	-	-
A4-7 V	Design bending moment	M ⁰ _{Rd,s}	[Nm]	16.7	33.3	59.0	148.7	291.0	502.6	-	-

Material specifications

Part	Designation			Mate	rial					
Steel,	zinc plated (Steel acc. to I	EN 10087:1998 or E	N 102	63:2001)						
- zinc p	lated ≥ 5 µm	acc. to EN ISO 4042:	1999							
- hot-dip	o galvanized ≥ 40 µm	acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009								
- sherar	dized ≥ 45 µm	acc. to EN ISO 17668:2016								
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture				
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 8%				
1	Anchor rod	acc. to EN ISO 898- 1:2013	4.8	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 8%				
			5.6	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 8%				
			5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A5 > 8%				
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A5 > 12% 3)				
			4	for anchor rod class 4	.6 or 4.8					
2	Hexagon nut	acc. to EN ISO 898- 2:2012	5	for anchor rod class 5	i.6 or 5.8					
			8	for anchor rod class 8	r anchor rod class 8.8					
3a	Washer	Steel, zinc plated, hot-dip galvanized or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:200								
3b	Filling Washer	Steel, zinc plated, hot-dip galvanized or sherardized								
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture				
4	Internal threaded anchor	acc. to	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A5 > 8%				
	rod	EN ISO 898- 1:2013		f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A5 > 8%				

Part	Designation	Material							
Stainl	Stainless steel A2 (Material 1.4301 / 1.4303 / 1.4307 / 1.4567 or 1.4541, acc. to EN 1088-1:2014)								
Stainl	Stainless steel A4 (Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014)								
High	corrosion resistance ste	el (Material 1.4529 d	or 1.45	65, acc. to EN 10088-	1:2014)				
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture			
1	Anchor rod 1) 4)	acc. to EN ISO 3506-	50	f _{uk} = 400 N/mm ²	$f_{yk} = 240 \text{ N/mm}^2$	A5 > 12% ³⁾			
		1:2009	70	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 12% 3)			
			80	$f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 300 N/mm ²	A5 > 12% 3)			
		acc. to	50	for anchor rod class 5	rod class 50				
2	Hexagon nut 1) 4)	EN ISO 3506- 1:2009	70	for anchor rod class 7	O				
			80	for anchor rod class 8	0				
3a	Washer	1:2014) Stainless steel A4 (<i>N</i> 10088-1:2014) HCR: Material 1.45	Stainless steel A4 (Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN						
3b	Filling Washer	Stainless steel A4, High corrosion resistance steel							
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture			
4	Internal threaded anchor	acc. to	50	f _{uk} = 500 N/mm ²	$f_{yk} = 210 \text{ N/mm}^2$	A5 > 8%			
	rod ^{1) 2)}	EN ISO 3506- 1:2009	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A5 > 8%			

Property class 70 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16

²⁾ for IG-M20 only property class 50

 $^{^{3)}}$ $\,$ A $_{\!_{5}}\!>\!8\%$ fracture elongation if \underline{no} requirement for performance category C2 exists

⁴⁾ Property class 80 only for stainless steel A4

Chemical resistance

Chemical Agent	Concentration	Resistant	Not Resistant
Air		•	
Acetic acid	10	•	
Ammonia, aqueous solution	5	•	
Chlorinated lime	10	•	
Citric acid	10	•	
Demineralized Water	100	•	
Diesel Fuel	100	•	
Ethanol	100		•
Ethyl Acetate	100		•
Fuel Oil	100	•	
Gasoline	100	•	
Hydraulic fluid	100	•	
Isopropyi alcohol	100		•
Lactic acid	10	•	
Linseed oil	100	•	
Lubricating oil	100	•	
Methanol	100		•
Phosphoric acid	10	•	
Potassium Hydroxide pH 13.2	100	•	
Salt (Calcium Chloride)	100	•	
Sea water	100	•	
Sodium Carbonate	10	•	
Sulfuric acid	10	•	

Properties of adhesive

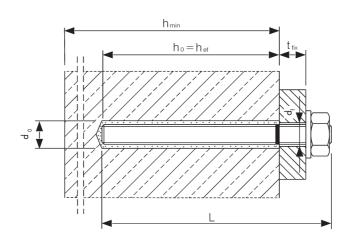
Property		Testing method	Result/Mean Value
Stability			
UV-resistance (sunlight)			Resistant
Temperature stability			≤ 160°C
Physical properties			
Flexural properties	Flexural strength	DINLEN 107 1	after 24 hours: 22.2 N/mm²
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours:126 N/mm²
	Tensile strength		14.9 N/mm ²
Tensile properties	Coefficient of elasticity	DIN EN ISO 527-2	8300 N/mm ²
	Mean strain at fracture		2.6%
Shrinkage		DIN 52450	< 1.8 %
Shore-hardness A		DIN EN ISO 868	97.6
Density		Weighing	1.78 kg/dm³
Thermal conductivity		DIN EN 993-15	1.06 W/mK
Specific heat capacity		DIIN EIN 993-13	1.09 J/Kg K
Electrical resistance		DIN IEC 93	7.2 . 10 ¹³ Ω
Workability features	i		
Working time (20°C)			3 min
Curing time (20°C)			30 mins
Shelf-life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

Working and curing times

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
-5°C to -1°C	50 min	5 h
0°C to 4°C	25 min	3.5 h
5°C to 9°C	15 min	2 h
10°C to 14°C	10 min	60 min
15°C to 19°C	6 min	40 min
20°C to 29°C	3 min	30 min
30°C to 40°C	2 min	30 min

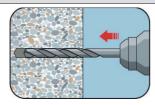
¹⁾ for wet base material the curing time must be doubled



Installation parameters

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35
Eff is 1 in	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance in hole in the fixture 1)	Prepositioned installation d _{f≤}	[mm]	9	12	14	18	22	26	30	33
	Push through installation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum torque moment	max T _{inst} ≤	[Nm]	10	20	40 2)	60	100	170	250	300
Minimum thickness of member	h _{min}		$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$							
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d1 + 1 mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar


 $^{^{\}rm 2)}$ Maximum Toruqe moment for M12 with steel Grade 4.6 is 35 Nm



Installation instructions

A) Bore hole drilling

1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar.

Proceed with Step B. In case of aborted drill hole, the drill hole shall be filled with mortar.

1b. Hollow drill bit system (HDB)

Drill a hole into the base material to the size and embedment depth required by the selected anchor. This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step C. In case of aborted drill hole, the drill hole shall be filled with mortar.

B) Bore hole cleaning

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ d_{nom} (non-cracked concrete only!)

- Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump a minimum of four
- Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of four times in a twisting motion.

 If the bore hole ground is not reached with the brush, a
- **2c.** Finally blow the hole clean again with a hand pump a minimum of four times.

brush extension shall be used.

CAC: Cleaning for dry, wet and water-filled bore holes with all diameters non-cracked and cracked concrete

- Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
- Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

After cleaning, the bore hole has to be protected against rec-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

C) Preparation of anchor rod and cartridge 3a. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used. 3b. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rod. 3c. Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components. D) Filling the bore hole 4. Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times. Piston plugs and mixer nozzle extensions hall be used for the following applications: · Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth • Overhead assembly (vertical upwards direction): Drill bit- \emptyset d₀ \ge 18 mm

E) Setting the anchor rod		
	5α.	Push the threaded rod into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material.
	5b.	After inserting the anchor, the annular gap between the anchor rod and concrete, in case of a push through installation, additionally also the fixture, must be completely filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application, the anchor rod shall be fixed (e.g. wedges).
30 Min	5c.	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured.
	5d.	After fully curing, the add-on part can be installed with up to the max. torque by using a calibrated torque wrench. In case of prepositioned installation, the annular gap between anchor and fixture can be optionally filled with mortar. Therefore, substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar when mortar oozes out of the washer.

Filling Quantity

Anchor type: M8 - M30

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30	
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35	
Drill depth	h _o / h ₁	[mm]	= h _{ef}								
Filling volume per 10mm embedment depth		[ml]	0.53	0.70	0.89	1.27	1.78	3.35	3.22	5.10	

Assumed waste of 15 % included.

 Cartridge sizes
 Art. no.

 280 ml
 peeler
 5918 504 280

 420 ml
 coaxial
 5918 500 420

 825 ml
 side-by-side
 5918 503 825

Approved for:

Suitable for:

Ø8 - Ø32

Rebar not supplied by Würth

Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
√	1	1

Concrete C20/25 to C50/60, non-cracked & cracked

Concrete C12/15, Natural stone with dense structure

Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	_	✓

Applications

Approvals and certificates

Description	Authority / laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	EAD 330087-00-0601	ETA-17/0036, 14.05.2019
European Technical Assessment	DIBt, Berlin	EAD 330499-01-0601	ETA-17/0127, 13.11.2020
ICC-ES Evaluation Report	ICC	AC 308	ESR-4466, 01.10.2019
Fire resistance	Ingenieurbüro Thiele	TR 020	210807, 09.02.2018
LEED	eurofins		16.03.17
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 1104875A	16.03.17
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Rebar material is according to specifications, steel grade B500B
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characterstic resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked concrete												
Tension	C20/25	N.	[L K I]	27.5	39.6	56.8	68.8	68.8	109.0	149.7	218.2	255.6
	C50/60	N _{Rk}	[kN]	27.5	43.5	62.2	84.7	89.8	152.7	235.9	338.8	404.2
Shear	≥ C20/25	V _{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	135.0	169.4	221.1
Cracked concrete	•											
Tension	C20/25	N.	[L K I]	11.1	15.6	24.9	35.7	40.8	69.4	104.8	152.8	1 <i>7</i> 8.9
	C50/60	IN _{Rk}	N _{Rk} [kN]	12.2	1 <i>7</i> .1	27.4	39.3	44.9	76.4	127.0	182.9	232.2
Shear	≥ C20/25	V_{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	135.0	169.4	221.1

Design resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Non-cracked concrete												
Tension	C20/25	NI	[LAJ]	18.8	26.4	37.8	45.8	45.8	72.7	99.8	145.5	170.4
	C50/60	N _{Rd}	N _{Rd} [kN]	19.6	29.0	42.6	56.4	59.9	101.8	157.2	226.4	269.4
Shear	≥ C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	90.0	112.9	147.4
Cracked concrete	•											
Tension	C20/25	NI	[LAJ]	7.4	10.4	16.6	23.8	27.2	46.3	69.9	101.8	119.3
	C50/60	IN _{Rd}	N _{Rd} [kN]	8.1	11.4	18.2	26.2	29.9	50.9	84.7	121.9	154.8
Shear	≥ C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	90.0	112.9	147.4

Recommended / allowable loads 1)

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked concrete												
Tension	C20/25	N	[L K I]	13.4	18.8	27.0	32.7	32.7	51.9	71.3	103.9	121.7
	C50/60	IN	I _{rec} [kN]	14.0	20.7	30.4	40.3	42.8	72.7	112.3	161.7	192.5
Shear	≥ C20/25	V	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	64.3	80.7	105.3
Cracked concrete	•											
Tension	C20/25	N.	[L K I]	5.3	7.4	11.8	17.0	19.4	33.1	49.9	72.7	85.2
	C50/60	N _{rec}	ec [kN]	5.8	8.1	13.0	18.7	21.4	36.4	60.5	87.1	110.6
Shear	≥ C20/25	V	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	64.3	80.7	105.3

 $^{^{1)}}$ Material safety factor γ_M and safety factor for action γ_L = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Rebar material according to specifications, steel grade B500B

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{{\scriptscriptstyle Rd,s}}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{bef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,l,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sy,p} \cdot f_{sy,p$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{h$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{pd}, of a single anchor

					KU,S						
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Design steel resistance	N _{Rd,s}	[kN]	19.6	31.0	44.4	60.5	79.0	123.4	192.9	242.0	315.9

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance No. in case of combined pull-out and concrete cone failure of a single anchor

	Rd,p										
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked concrete											
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	18.8	26.4	38.7	51.3	54.5	92.6	142.9	205.8	261.4
Cracked concrete											
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	7.4	10.4	16.6	23.8	27.2	46.3	77.0	110.8	140.7

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$

$$c_{cr,p} = s_{cr,p}/2$$

Where $\tau_{_{Rk}}$ is the value $\tau_{_{Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{c,p}$ and spacing $s_{c,p}$ ($f_{sus}=1$)

		7/-									
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Spacing	S _{cr,p}	[mm]	219	270	328	375	375	510	630	737	842
Edge distance	C _{cr,p}	[mm]	109	135	164	188	188	255	315	368	421

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

 $^{^{1\!]}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, \, typ}}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,p, f sy,p	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,p, f sy,p	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,70	0,75	0,90	0,95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.42	0.65	0.40	0.70	0.73	0.75	0.78	0.80	0.83	0.85	^ 00	0.85	0.88	0.95	0.98	1.00
f _{cy}	0.55	0.56	0.00	0.03	0.63	0.06	0.70	0.73	0.73	0.76	0.80	0.63	0.63	0.00	0.63	0.00	0.93	0.96	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 $N_{sus,d}$ = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f _{sus}	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance N_{Rdc}° in case of concrete cone failure of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	$h_{\rm ef}$	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Non-cracked concrete											
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	23.5	28.0	37.8	45.8	45.8	72.7	99.8	145.5	170.4
Cracked concrete											
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	19.6	26.5	32.1	32.1	50.9	69.9	101.8	119.3

Table 9: Characteristic edge distance $c_{cr,N}$ and spacing $s_{cr,N}$

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Spacing	S _{cr,N}	[mm]	240	270	330	375	375	510	630	810	900
Edge distance	C _{cr,N}	[mm]	120	135	165	188	188	255	315	405	450

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef}$$
 and $c_{cr,N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef, typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
r _{cv}																			

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_$$

Table 13: Design resistance N_{ext} in case of concrete splitting failure of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Non-cracked concrete											
Concrete cone resistance	N ⁰ _{Rd,sp}	[kN]	18.8	26.4	3 <i>7</i> .8	45.8	45.8	72.7	99.8	145.5	170.4

Table 14: Characteristic edge distance c_{crsp} and spacing s_{crsp}

		cr,sp	, .	cr,sp							
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Characteristic spacing	S _{cr,sp}	[mm]	360	420	528	600	590	816	1004	1296	1440
Characteristic edge distance	C _{cr,sp}	[mm]	180	210	264	300	295	408	502	648	720
Minimum member thickness	h _{min}	[mm]	110	120	140	161	165	220	274	340	380

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and h_{min} according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ek}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , f sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

								_												
h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,p}, N_{Rd,c}\}$

3. Concrete edge failure $V_{Rdc} = V_{Rdc}^0 \cdot f_{hV} \cdot f_{hefV} \cdot f_{sV} \cdot f_{c1V} \cdot f_{c2V} \cdot f_{a} \cdot f_{hefV}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{pd}, of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Design steel resistance	V _{Rd,s}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	90.0	112.9	147.4

2. Design concrete pry-out resistance

$$V_{\rm Rd,c} = k_{\rm g} \cdot \min \{N_{\rm Rd,p}; N_{\rm Rd,c}\}$$

Table 20: factor k_g for calculating design pry-out resistance

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{hef,V} \cdot f_{s,V} \cdot f_{c1,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{hef,V}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance V_{Rdc}^0 in case of concrete edge failure

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage length	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Non-cracked concrete											
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.8	3.6	4.6	5.6	7.2	10.0	11.3	13.9	17.2
Cracked concrete											
Basic design edge resistance	V O Rd,c	[kN]	2.0	2.5	3.2	4.0	5.1	<i>7</i> .1	8.0	9.8	12.2

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef,V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

d. Influence of edge distance c,

Table 25: Influence of edge distance c, on concrete edge resistance

c ₁ /d	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	1 <i>7</i> .54	34.66	59.52	8 <i>7</i> .35

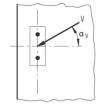
²⁾ strength at 28 days of 150 mm cubes

e. Influence of edge distance c

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c, on concrete edge resistance

c _{2/c1} 1)	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00


 $^{^{1)}}$ Distance to the second edge: $c_1 \le c_2$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +80°C	+50°C	+80°C
Temperature range III	- 40°C to +120°C	+72°C	+120°C
Temperature range IV	- 40°C to +160°C	+100°C	+160°C

Service temperature for working life of 100 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +80°C	+50°C	+80°C

Working life of 50 years

1- Non-cracked concrete

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in case	of manu	al air cle	aning (M.	AC)				
Temperature range l				7.8	7.8	<i>7</i> .8	<i>7</i> .8	7.2					
Temperature range II	Dry and wet	Τ.	[N/mm²]	7.8	7.8	7.8	7.8	7.2		No perfo	ormance	ad	
Temperature range III	concrete	τ _{Rd,ucr}	[14/11111]	7.2	6.7	6.7	6.7	6.7		140 pend	mance	ussessed	
Temperature range IV				5.3	5.3	5.3	5.0	5.0					
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in case	of comp	ressed ai	r cleaning	(CAC)				
Temperature range l				9.3	9.3	9.3	9.3	8.7	8.7	8.7	8.7	8.7	8.7
Temperature range II	Dry and wet	_	[N/mm²]	9.3	9.3	9.3	9.3	8.7	8.7	8.7	8.7	8.7	8.7
Temperature range III	concrete	τ _{Rd,ucr}	[14/11111]	8.7	8.0	8.0	8.0	8.0	7.3	7.3	7.3	7.3	7.3
Temperature range IV				6.3	6.3	6.3	6.0	6.0	6.0	6.0	6.0	5.7	5.7
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in case	of hollov	v drill bit	system (F	HDB)				
Temperature range l				7.8	7.8	7.8	<i>7</i> .8	7.2	7.2	7.2	7.2	7.2	7.2
Temperature range II	Dry and		[N/mm²]	7.8	7.8	7.8	7.8	7.2	7.2	7.2	7.2	7.2	7.2
Temperature range III	wet concrete	τ _{Rd,ucr}	[IN/mm ⁻]	7.2	6.7	6.7	6.7	6.7	6.1	6.1	6.1	6.1	6.1
Temperature range IV				5.3	5.3	5.3	5.0	5.0	5.0	5.0	5.0	4.7	4.7
Design bond	resistance in n	on-crac	ked concrete	e C20/2	5 in case	of comp	ressed ai	r cleaning	(CAC)				
Temperature range I		ooded		6.7	6.7	6.7	6.7	6.2	6.2	6.2	6.2	6.2	6.2
Temperature range II	Flooded		[N/mm²]	6.7	6.7	6.7	6.7	6.2	6.2	6.2	6.2	6.2	6.2
Temperature range III	Flooded bore hole τ_{Rc}	τ _{Rd,ucr}	[IN/mm²]	6.2	5.7	5.7	5.7	5.7	5.2	5.2	5.2	5.2	5.2
Temperature range IV		bore hole		4.5	4.5	4.5	4.3	4.3	4.3	4.3	4.3	4.0	4.0

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond	resistance in c	racked	concrete C2	20/25 in	case of r	nanual ai	r cleaning	g (MAC)					
Temperature range I				3.1	3.1	3.3	3.6	3.6					
Temperature range II	Dry and wet	_	[N/mm²]	3.1	3.1	3.3	3.6	3.6		No perfo	ormanco.	arrarrad	
Temperature range III	concrete	τ _{Rd,cr}	[IN/IIIII]	2.5	2.8	2.8	3.1	3.1		тчо репс	ormance	ussessea	
Temperature range IV				2.2	2.5	2.5	2.8	2.8					
Design bond	resistance in c	racked	concrete C2	20/25 in	case of c	ompresse	ed air cle	aning (C	AC)				
Temperature range l				3.7	3.7	4.0	4.3	4.3	4.3	4.3	4.7	4.7	4.7
Temperature range II	Dry and wet	τ.	[N]/mm ²]	3.7 N/mm²l	3.7	4.0	4.3	4.3	4.3	4.3	4.7	4.7	4.7
Temperature range III	concrete	τ _{Rd,cr}		3.0	3.3	3.3	3.7	3.7	3.7	3.7	4.0	4.0	4.0
Temperature range IV				2.7	3.0	3.0	3.3	3.3	3.3	3.3	3.3	3.3	3.3
Design bond	resistance in c	racked	concrete C2	20/25 in	case of h	ollow dri	ll bit syste	em (HDB)					
Temperature range I				3.1	3.1	3.3	3.6	3.6	3.6	3.6	3.9	3.9	3.9
Temperature range II	Dry and wet	_	[N/mm²]	3.1	3.1	3.3	3.6	3.6	3.6	3.6	3.9	3.9	3.9
Temperature range III	concrete	τ _{Rd,cr}	[IN/IIIII]	2.5	2.8	2.8	3.1	3.1	3.1	3.1	3.3	3.3	3.3
Temperature range IV				2.2	2.5	2.5	2.8	2.8	2.8	2.8	2.8	2.8	2.8
Design bond	resistance in c	racked	concrete C2	20/25 in	case of c	ompresse	ed air cle	aning (C	AC)				
Temperature range I				2.6	2.6	2.9	3.1	3.1	3.1	3.1	3.3	3.3	3.3
Temperature range II	Flooded	oded	[N/mm²]	2.6	2.6	2.9	3.1	3.1	3.1	3.1	3.3	3.3	3.3
Temperature range III	bore hole	Rd,cr	[14/mm²]	2.1	2.4	2.4	2.6	2.6	6 2.6 2.6 2.9 2.		2.9	2.9	
Temperature range IV		-		1.9	2.1	2.1	2.4	2.4	2.4	2.4	2.4	2.4	2.4

Working life of 100 years

1- Non-cracked concrete

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in case	of manu	al air cled	aning (M	AC)				
Temperature range I	Dry and	$\tau_{_{Rd,ucr,}}$	[N1/ 2]	7.8	7.8	7.8	7.8	7.2		NI (
Temperature range II	wet concrete	100	[N/mm ²]	7.8	7.8	<i>7</i> .8	7.8	7.2		No perfo	ormance	assessea	
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in case	of comp	ressed ai	r cleaning	g (CAC)				
Temperature range l	Dry and	$\tau_{_{Rd,ucr,}}$	[N1/2]	9.3	9.3	9.3	9.3	8.7	8.7	8.7	8.7	8.7	8.7
Temperature range II	wet oncrete	100	[N/mm ²]	9.3	9.3	9.3	9.3	8.7	8.7	8.7	8.7	8.7	8.7
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in case	of hollov	v drill bit system (HDB)						
Temperature range I	Dry and	$\tau_{_{Rd,ucr,}}$	[N1/ 2]	7.8	7.8	7.8	7.8	7.2	7.2	7.2	7.2	7.2	7.2
Temperature range II	wet concrete	100	[N/mm ²]	7.8	7.8	7.8	7.8	7.2	7.2	7.2	7.2	7.2	7.2
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in case	of comp	ressed ai	r cleaning	(CAC)				
Temperature range I	Flooded	TRAJUE	[N1/21	6.7	6.7	6.7	6.7	6.2	6.2	6.2	6.2	6.2	6.2
Temperature range II	bore hole	T _{Rd,ucr,}							6.2	6.2	6.2		

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond	resistance in c	racked	concrete C2	20/25 in	case of r	nanual ai	r cleaning	g (MAC)					
Temperature range I	Dry and	$\tau_{_{\text{Rd,cr,}}}$	[N/mm²]	2.5	2.5	2.5	2.5	2.5		NI			
Temperature range II	concrete	100	[IN/mm ⁻]	2.5	2.5	2.5	2.5	2.5		No perfo	ormance	assessea	
Design bond	resistance in re	acked c	concrete C20	0/25 in d	case of co	mpressed	d air clea	ning (CA	C)				
Temperature range I	Dry and	τ _{Rd,cr,}	[N/mm²]	3.0	3.0	3.0	3.0	3.0	2.7	2.7	2.7	2.7	2.7
Temperature range II	wet concrete	100	[IN/mm²]	3.0	3.0	3.0	3.0	3.0	2.7	2.7	2.7	2.7	2.7
Design bond	resistance in c	racked	concrete C2	20/25 in	case of h	ollow dri	ll bit syste	em (HDB))				
Temperature range I	Dry and	τ _{Rd,cr,}	[N1/2]	2.5	2.5	2.5	2.5	2.5	2.2	2.2	2.2	2.2	2.2
Temperature range II	concrete	100	[N/mm²]	2.5	2.5	2.5	2.5	2.5	2.2	2.2	2.2	2.2	2.2
Design bond	resistance in c	racked	concrete C2	20/25 in	case of c	ompresse	ed air cle	aning (C	AC)				
Temperature range I	Flooded	$\tau_{_{\text{Rd,cr,}}}$	[N/mm ²]	2.1	2.1	2.1	2.1	2.1	1.9	1.9	1.9	1.9	1.9
Temperature range II	bore hole	100		2.1	2.1	2.1	2.1	2.1	1.9	1.9	1.9	1.9	1.9

Reduction factors

Working life of 50 years

1- Non-cracked concrete

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fac	tor for non-cro	icked co	oncrete C20	/25 in c	ase of mo	ınual air	cleaning	(MAC)					
Temperature range l				1.00	1.00	1.00	1.00	1.00					
Temperature range II	Dry and wet	_	[N/mm²]	1.00	1.00	1.00	1.00	1.00		No perfo			
Temperature range III	concrete	τ _{Rd,ucr}	[14/11111]	0.93	0.86	0.86	0.86	0.92		тчо репс	ormance	ussessed	
Temperature range IV				0.68	0.68	0.68	0.64	0.69					
Reduction fac	tor for non-cro	icked co	oncrete C20	/25 in c	ase of co	mpressed	air clear	ning (CAC	C)				
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	Dry and wet	_	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III	concrete	τ _{Rd,ucr}	[14711111]	0.93	0.86	0.86	0.86	0.92	0.85	0.85	0.85	0.85	0.85
Temperature range IV				0.68	0.68	0.68	0.64	0.69	0.69	0.69	0.69	0.65	0.65
Reduction fac	tor for non-cro	icked co	oncrete C20	/25 in c	ase of ho	llow drill	bit systen	(HDB)					
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	Dry and wet	_	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III	concrete	T _{Rd,ucr}	[14/11111]	0.93	0.86	0.86	0.86	0.92	0.85	0.85	0.85	0.85	0.85
Temperature range IV				0.68	0.68	0.68	0.64	0.69	0.69	0.69	0.69	0.65	0.65
Reduction fac	tor for non-cro	icked co	oncrete C20	/25 in c	ase of co	mpressed	air clear	ning (CAC	C)				
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	Flooded		[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III	bore hole	τ _{Rd,ucr}	[N/mm ²]	0.93	0.86	0.86	0.86	0.92	0.85	0.85	0.85	0.85	0.85
Temperature range IV		Rd,ucr		0.68	0.68	0.68	0.64	0.69	0.69	0.69	0.69	0.65	0.65

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fac	tor for cracked	d concr	ete C20/25	in case	of manua	l air cleai	ning (MA	.C)					
Temperature range l				1.00	1.00	1.00	1.00	1.00					
Temperature range II	Dry and	_	[N/mm ²]	1.00	1.00	1.00	1.00	1.00		No perfo		d	
Temperature range III	wet concrete	$\tau_{\text{Rd,cr}}$	[IN/IIIII]	0.82	0.91	0.83	0.85	0.85		тчо репс	ormance	assessea	
Temperature range IV				0.73	0.82	0.75	0.77	0.77					
Reduction fac	tor for cracked	concr	ete C20/25	in case	of compre	essed air	cleaning	(CAC)					
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	Dry and wet	_	[N1/mm2]	N/mm ²]					1.00	1.00	1.00	1.00	
Temperature range III	concrete	$\tau_{\text{Rd,cr}}$	[IN/IIIII]	0.82	0.91	0.83	0.85	0.85	0.85	0.85	0.86	0.86	0.86
Temperature range IV				0.73	0.82	0.75	0.77	0.77	0.77	0.77	0.71	0.71	0.71
Reduction fac	tor for cracked	d concr	ete C20/25	in case	of hollow	drill bit s	ystem (HI	OB)					
Temperature range l				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	Dry and	_	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III	wet concrete	τ _{Rd,cr}	[14/ mm-]	0.82	0.91	0.83	0.85	0.85	0.85	0.85	0.86	0.86	0.86
Temperature range IV				0.73	0.82	0.75	0.77	0.77	0.77	0.77	0.71	0.71	0.71
Reduction fac	tor for cracked	d concr	ete C20/25	in case	of compre	essed air	cleaning	(CAC)					
Temperature range l		for cracked concre		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	Flooded		1	D. (1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III	bore hole	$\tau_{\text{Rd,cr}}$	[N/mm²]	0.82	0.91	0.83	0.85	0.85	0.85	0.85	0.86	0.86	0.86
Temperature range IV	Solo Hole		0.73	0.82	0.75	0.77	0.77	0.77	0.77	0.71	0.71	0.71	

Working life of 100 years

1- Non-cracked concrete

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fac	tor for non-cra	cked co	oncrete C20	/25 in co	ase of mo	ınual air (cleaning	(MAC)					
Temperature range I	Dry and wet	$\tau_{\text{Rd,ucr,}}$	[N/mm²]	1.00	1.00	1.00	1.00	1.00		No perfo			
Temperature range II	concrete	100	[14/11111]	1.00	1.00	1.00	1.00	1.00		тчо репс	ormance	ussessea	
Reduction fac	tor for non-cra	cked co	oncrete C20	/25 in co	ase of co	mpressed	air clear	ning (CAC	C)				
Temperature range I	Dry and	$\tau_{_{Rd,ucr,}}$	[N1/2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet oncrete	100	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduction fac	tor for non-cra	icked co	oncrete C20	/25 in co	ase of ho	llow drill	bit systen	n (HDB)					
Temperature range I	Dry and	$\tau_{_{Rd,ucr,}}$	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete	100	[IN/mm]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduction fac	tor for non-cra	icked co	oncrete C20	/25 in co	ase of co	mpressed	air clear	ning (CAC	C)				
Temperature range I	Flooded	$\tau_{_{\text{Rd,ucr,}}}$	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole	100	[IN/IMM-]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Rebar size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32	
Reduction fact	tor for cracked	d concr	ete C20/25	in case o	of manua	l air clear	ning (MA	C)						
Temperature range I	Dry and	τ _{Rd,cr,}	[N1/2]	1.00	1.00	1.00	1.00	1.00		NI				
Temperature range II	wet concrete	100	[N/mm²]	1.00	1.00	1.00	1.00	1.00		No perfo	ormance	assessea		
Reduction fact	tor for racked	concre	te C20/25	n case o	f compres	sed air c	leaning (CAC)						
Temperature range I	Dry and	τ _{Rd,cr,}	[N1/ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	wet concrete	100	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Reduction fact	tor for cracked	concr	rete C20/25 in case of hollow drill bit system (HDB)											
Temperature range l	Dry and	τ _{Rd,cr,}	[b.1./ 2]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	wet concrete	100	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Reduction fac	tor for cracked	concr	ete C20/25	in case o	of compre	essed air	cleaning	r cleaning (C	eaning (CAC)					
Temperature range I	Flooded	τ _{Rd,cr,}	1.00 1.00 1.00 1.00 1.00 1.00 1.00						1.00	1.00	1.00			
Temperature range II	bore hole	100	1 1 4 1111					1.00	1.00	1.00	1.00			

Mechanical characteristics

Steel grade	Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
	Stressed cross section	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
	Section modulus	W	[mm³]	50	98	1 <i>7</i> 0	269	402	<i>7</i> 85	13 <i>57</i>	1534	2155	3217
	Yield strength	f _y	[N/mm²]	460	460	460	460	460	460	460	460	460	460
460A	Tensile strength	f	[N/mm²]	483	483	483	483	483	483	483	483	483	483
400/1	Design bending moment	M ^O _{Rd,s}	[Nm]	19	38	66	104	155	303	524	593	833	1243
	Yield strength	fy	[N/mm²]	460	460	460	460	460	460	460	460	460	460
460B	Tensile strength	fu	[N/mm²]	497	497	497	497	497	497	497	497	497	497
	Design bending moment	M ^O _{Rd,s}	[Nm]	20	39	68	107	160	312	540	610	857	1279
	Yield strength	f _y	[N/mm²]	500	500	500	500	500	500	500	500	500	500
B500B	Tensile strength	f	[N/mm²]	550	550	550	550	550	550	550	550	550	550
	Design bending moment	M ⁰ _{Rd,s}	[Nm]	22	43	75	118	177	345	597	675	948	1415

Material specifications

Product form		Bars and de-coiled rods					
Class		A	В	С			
Characteristic yie f _{0,2k} (MPa)	eld strength f _{yk} or	400 to 600					
Minimum value o	of $k = (f_{t}/f_{y})_{k}$	≥ 1.05	≥ 1.08	≥ 1.15 < 1.35			
Characteristic strain at maximum force, ε_{uk} (%)		≥ 2.5	≥ 5.0	≥ 7.5			
Bendability		Bend/Rebend test					
Maximum deviation from nominal mass (individual bar or wire) (%)	Nominal bar size (mm) ≤ 8		+/- 6.0 +/- 4.5				

WIT-UH 300 WITH REBAR

Chemical resistance

Chemical agent	Concentration	Resistant	Not Resistant
Air		•	
Acetic acid	10	•	
Ammonia, aqueous solution	5	•	
Chlorinated lime	10	•	
Citric acid	10	•	
Demineralized Water	100	•	
Diesel Fuel	100	•	
Ethanol	100		•
Ethyl Acetate	100		•
Fuel Oil	100	•	
Gasoline	100	•	
Hydraulic fluid	100	•	
Isopropyi alcohol	100		•
Lactic acid	10	•	
Linseed oil	100	•	
Lubricating oil	100	•	
Methanol	100		•
Phosphoric acid	10	•	
Potassium Hydroxide pH 13.2	100	•	
Salt (Calcium Chloride)	100	•	
Sea water	100	•	
Sodium Carbonate	10	•	
Sulfuric acid	10	•	

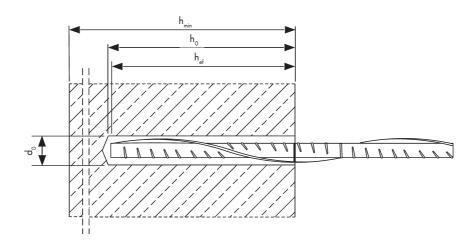
Properties of adhesive

Property		Testing method	Result / Mean value
Stability			
UV-resistance (sunlight)			Resistant
Temperature stability			≤ 160°C
Physical properties			
Flexural properties	Flexural strength	DIN EN 196-1	after 24 hours: 22,2 N/mm²
Compressive properties	Compressive strength	DIIN EIN 190-1	after 24 hours: 126 N/mm²
	Tensile strength		14,9 N/mm²
Tensile properties	Coefficient of elasticity	DIN EN ISO 527-2	8300 N/mm ²
	Mean strain at fracture		2,6 %
Shrinkage		DIN 52450	< 1,8 %
Shore-hardness A		DIN EN ISO 868	97,6
Density		Weighing	1,78 kg/dm³
Thermal conductivity		DINI FNI 002 15	1,06 W/mK
Specific heat capacity		DIN EN 993-15	1,09 J/Kg K
Electrical resistance		DIN IEC 93	7,2 . 10 ¹³ Ω
Workability features			
Working time (20°C)			3 min
Curing time (20°C)			30 mins
Shelf-life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

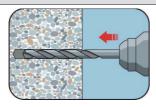
Working and curing times

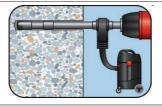
Gelling – working time	Min. curing time – dry conditions ¹⁾
50 min	5 h
25 min	3.5 h
15 min	2 h
10 min	60 min
6 min	40 min
3 min	30 min
2 min	30 min
	working time 50 min 25 min 15 min 10 min 6 min 3 min


¹⁾ for wet base material the curing time must be doubled

WIT-UH 300 WITH REBAR

Installation parameters

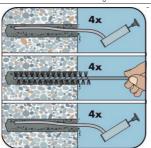

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d_{\circ}	[mm]	12	14	16	18	20	25	32	32	35	40
Effective anchorage	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
-l1-	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm				h _{ef} +	$2d_{0}$			
Minimum spacing	S _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	C _{min}	[mm]	35	40	45	50	50	60	70	70	<i>7</i> 5	85



Installation instructions

A) Bore hole drilling

1a. Hammer (HD) or compressed air drilling (CD)


Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. Proceed with Step B.

1b. Hollow drill bit system (HDB)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. This drilling system removes the dust and cleans the bore hole during drilling. Proceed with Step C.

B) Bore hole cleaning

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ ds (non-cracked concrete only!)

- 2a. Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump a minimum of four times.
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension shall be used.

2c. Finally blow the hole clean again with a hand pump a minimum of four times.

CAC: Cleaning for all bore hole diameter and bore hole depth with drilling method HD and CD (non-cracked & cracked concrete)

2c.

- Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
 - Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

WIT-UH 300 WITH REBAR

C) Preparation of bar and cartridge Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used. 3a. In case of using the mixer extension VL 16/1,8, the tip of the mixer nozzle has to be cut off at position "X". 3b. Prior to inserting the reinforcing bar into the filled bore hole, the position of the embedment depth shall be marked (e.g. with tape) on the reinforcing bar. After that, insert the bar in the empty hole to verify hole and depth lv. The anchor should be free of dirt, grease, oil and other foreign material. 3c. Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components. D) Filling the bore hole Starting from the bottom or back of the cleaned bore hole, 4. fill the hole with adhesive until the level mark at the mixer extension is visible at the top of the hole. For embedment larger than 190 mm, an extension nozzle shall be used. Slowly withdraw the static mixing nozzle. Using a piston plug during injection of the mortar helps to avoid creating air pockets. For overhead and horizontal installation and bore holes deeper than 240 mm, a piston plug and the appropriate mixer extension must be used. Observe the gel-/ working

E) Setting the rebar							
	5a.	Push the reinforcing bar into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material.					
	5b.	Be sure that the bar is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For horizontal and overhead installation, fix embedded part (e.g. with wedges).					
30 Min.	5c.	Observe gelling time t gell. Attend that the gelling time can vary according to the base material temperature. Do not move or load the bar until full curing time tcure has elapsed. Allow the adhesive to cure to the specified time prior to applying any load. Do no move or load the bar until it is fully cured. After full curing time t cure has elapsed, the addon part can be installed.					

WIT-UH 300 WITH REBAR

Filling Quantity

Anchor size: Ø 8 - Ø 32

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	25	32	32	35	40
Drill depth	h _o / h ₁	[mm]		= h _{ef}								
Filling volume per 10mm embedment depth		[ml]	0.81	1.01	1.21	1.43	1.66	2.59	4.85	4.47	5.07	6.62

Assumed waste of 15 % included.

Galvanized (5 microns): M8 - M30

Stainless steel - A4 (AISI 316): M8 - M30

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridg	e sizes	Art. no.
440 ml	side-by-side	5918 605 440
585 ml	side-by-side	5918 605 585
1400 ml	side-by-side	5918 605 140

Type of installation							
Pre-positioned	In-place	Stand-off					
✓	✓	✓					

Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
✓	✓	/

Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	✓	/

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt. Berlin	EAD 330499-01-0601	ETA-19/0542. 06.11.2020
ICC-ES Evaluation Report	ICC	AC 308	requested
Fire resistance	Ingenieurbüro Thiele	TR 020	22022. 14.05.2020
LEED	eurofins		19.09.19
VOC Emissions Test report	eurofins	DEVL 1101903D. DEVL 1104875A	19.09.19
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Anchor material according is to specifications.
 steel grade 5.8 unless otherwise stated

- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characterstic resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete											
Tension	C20/25	N.	[LVI]	18.3	29.0	42.2	68.8	109.0	149.7	182.9	218.2
	C50/60	N _{Rk}	[kN]	18.3	29.0	42.2	78.5	122.5	176.5	229.5	280.5
Shear	≥ C20/25	V _{Rk}	[kN]	11.0	17.4	25.3	47.1	73.5	105.9	137.7	168.3
Cracked concrete											
Tension	C20/25	l N	[LVI]	14.1	19.8	35.2	48.1	76.3	104.8	128.0	152.8
	C50/60	N _{Rk}	[kN]	15.5	21.8	38.8	58.7	99.9	148.0	190.3	237.9
Shear	≥ C20/25	V _{Rk}	[kN]	11.0	17.4	25.3	47.1	73.5	105.9	137.7	168.3

Design resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete											
Tension	C20/25	N.	[[KI]	12.2	19.3	28.1	45.8	72.7	99.8	121.9	145.5
	C50/60	N _{Rd}	[kN]	12.2	19.3	28.1	52.3	81. <i>7</i>	11 <i>7.7</i>	153.0	187.0
Shear	≥ C20/25	V _{Rd}	[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Cracked concrete											
Tension	C20/25	N.	[LVI]	9.4	13.2	23.5	32.1	50.9	69.9	85.4	101.8
	C50/60	N _{Rd}	[kN]	10.3	14.5	25.8	39.2	66.6	98.7	126.9	158.6
Shear	≥ C20/25	V _{Rd}	[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6

Recommended/allowable loads 1)

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete											
Tension	C20/25	N.	[LVI]	8. <i>7</i>	13.8	20.1	32.7	51.9	71.3	87.1	103.9
	C50/60	N _{rec}	[kN]	8.7	13.8	20.1	37.4	58.3	84.0	109.3	133.6
Shear	≥ C20/25	V	[kN]	6.3	9.9	14.5	26.9	42.0	60.5	78.7	96.2
Cracked concrete											
Tension	C20/25	N	[LVI]	6.7	9.4	16.8	22.9	36.3	49.9	61.0	72.7
	C50/60	rec	[kN]	7.4	10.4	18.5	28.0	47.6	70.5	90.6	113.3
Shear	≥ C20/25	V	[kN]	6.3	9.9	14.5	26.9	42.0	60.5	78.7	96.2

 $^{^{1)}}$ Material safety factor γ_M and safety factor for action γ_L = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C).
- · Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Anchor material according to specifications, steel grade 5.8 unless otherwise stated in the tables

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{\rm Rds}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cv,sp} \cdot f_{hef} \cdot f_{h$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		$h_{\rm ef}$	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Design steel resistance	5.8	N _{Rd,s}	[kN]	12.2	19.3	28.1	52.3	81. <i>7</i>	11 <i>7.7</i>	153.0	187.0
	8.8	N _{Rd,s}	[kN]	19.3	30.7	44.7	83.3	130.7	188.0	245.3	299.3
	A4	N _{Rd,s}	[kN]	13.9	21.9	31.6	58.8	91.4	132.1	80.4	98.3

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance $N_{s,t}^0$ in case of combined pull-out and concrete cone failure of a single anchor

Ка,р	Rd.p.													
Thread size			M8	M10	M12	M16	M20	M24	M27	M30				
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270				
Non-cracked concrete														
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	26.8	37.7	52.5	79.6	128.2	179.4	217.1	271.4				
Cracked concrete														
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	9.4	13.2	23.5	35.6	60.5	89.7	115.4	144.2				

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$
 • $c_{cr,p} = s_{cr,p}/2$

•
$$c_{crp} = s_{crp}/2$$

Where $au_{_{\it Rk}}$ is the value $au_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{cr,p}$ and spacing $s_{cr,p}$ ($f_{sus} = 1$)

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,p}	[mm]	240	270	330	375	510	630	720	810
Edge distance	C _{cr,p}	[mm]	120	135	165	188	255	315	360	405

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, \, typ}}$$

Consider the approved range of embedment $h_{_{ef,min}} \le h_{_{ef}} \le h_{_{ef,max}}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx,p,} f _{sy,p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,p, sy,p	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,p}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
f _{cy, p}	0.55	0.50	0.00	0.00	0.00	0.00	0.7	0.7	3:	0:5	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.70	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 N_{susd} = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f _{sus}	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance N_{Rdc}^0 in case of concrete cone failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30		
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270		
Non-cracked concrete												
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	23.5	28.0	37.8	45.8	72.7	99.8	121.9	145.5		
Cracked concrete												
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	19.6	26.5	32.1	50.9	69.9	85.4	101.8		

Table 9: Characteristic edge distance $c_{cl,N}$ and spacing $s_{cl,N}$

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,N}	[mm]	240	270	330	375	510	630	720	810
Edge distance	C _{cr,N}	[mm]	120	135	165	188	255	315	360	405

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{crN} = 3 h_{ef}$$
 and $c_{crN} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef, typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 12: Influence of edge distance on concrete cone resistance

			•																
c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.40	0.70	0.72	0.75	0.70	0.00	0.83	0.05	0.88	0.85	0.88	0.95	0.98	1.00
f _{cy}	0.55	0.56	0.80	0.63	0.63	0.08	0.70	0.73	0.73	0.78	0.80	0.63	0.63	0.66	0.63	0.00	0.93	0.96	1.00

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$$

Table 13: Design resistance N_{s.1.2} in case of concrete splitting failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete										
Concrete splitting resistance	N ⁰ _{Rd,sp}	[kN]	23.5	28.0	37.8	45.8	72.7	99.8	121.9	145.5

Table 14: Characteristic edge distance c_{crsp} and spacing s_{crsp}

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	S _{cr,sp}	[mm]	360	420	528	600	816	1008	1152	1296
Edge distance	C _{cr,sp}	[mm]	180	210	264	300	408	504	576	648
Minimum member thickness	h _{min}	[mm]	110	120	140	161	218	266	304	340

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \; - \; \left(\frac{h_{min}}{h_{ef}} \right) \right) \; \leq 2.4 \; h_{ef} \right\}$$

and h_{min} according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , f sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1$$
 $f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$

Table 17: Influence of edge distance on splitting resistance

			•		,	•													
c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
t _{cy}																			1

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

								_												
h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1. <i>7</i>	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,c}, N_{Rd,c}\}$

 $\textbf{3. Concrete edge failure} \qquad V_{\textit{Rd,c}} = V_{\textit{Rd,c}}^{\textit{0}} \cdot f_{\textit{b,V}} \cdot f_{\textit{hef,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c1,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
	5.8		[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Design steel resistance	8.8	V _{Rd,s}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	179.2
	A4		[kN]	8.3	12.8	19.2	35.3	55.1	<i>7</i> 9.5	48.3	58.8

2. Design concrete pry-out resistance

$$V_{\rm Rd.c} = k_{\rm g} \cdot \min \left\{ N_{\rm Rd.p}; N_{\rm Rd.c} \right\}$$

Table 20: factor k_g for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\rm Rd,c} = \ V_{\rm Rd,c}^0 \cdot f_{\rm b,V} \cdot f_{\rm hef,V} \cdot f_{\rm s,V} \cdot f_{\rm c1,V} \cdot f_{\rm c2,V} \cdot f_{\rm a} \cdot f_{\rm h}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max (10 h_{ef}; 60 d)$. For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance $V_{o,i}^0$ in case of concrete edge failure

Rd,c case a										
Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete										
Basic design edge resistance	V ^O _{Rd,c}	[kN]	2.8	3.6	4.6	5.8	8.3	10.3	13.1	15.2
Cracked concrete										
Basic design edge resistance	V O Rd,c	[kN]	2.0	2.5	3.2	4.1	5.9	<i>7</i> .3	9.3	10. <i>7</i>

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef,V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s. when there are different spacing in the row closest to the edge.

d. Influence of edge distance c,

Table 25: Influence of edge distance c, on concrete edge resistance

c _{1/d}	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	1 <i>7</i> .54	34.66	59.52	87.35

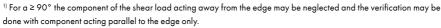
²⁾ strength at 28 days of 150 mm cubes

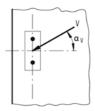
e. Influence of edge distance c

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c, on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00


^{1]} Distance to the second edge: $c_1 \le c_2$


f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

_											
	$\alpha^{1)}$	0	10	20	30	40	50	60	70	80	90
	$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

 V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$\left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \le 1$ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service Temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +72°C	+50°C	+72°C

Service temperature for working life of 100 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +80°C	+50°C	+80°C
Temperature range III	- 40°C to +120°C	+72°C	+120°C
Temperature range IV	- 40°C to +160°C	+100°C	+160°C

Working life of 50 years

1- Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30	
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in hammer c	drilled holes	(HD) and	compressed	d air drilled	holes (CD)		
Temperature range I	Dry and			13.3	13.3	12.7	12.7	12.0	11.3	10. <i>7</i>	10. <i>7</i>	
Temperature range II	wet concrete		[N1/ 2]	10.0	10.0	10.0	9.3	8.7	8.7	8.0	8.0	
Temperature range I	Flooded	τ _{Rd,ucr}	[N/mm ²]	11.1	11.1	10.6	10.6	10.0	9.4	8.9	8.9	
Temperature range II	bore hole			8.3	8.3	8.3	<i>7</i> .8	7.2	7.2	6.7	6.7	
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in hammer c	drilled holes	with hollo	w drill bit (F	IDB)			
Temperature range l	Dry and			11.3	10. <i>7</i>	10.7	10. <i>7</i>	10.0	9.3	9.3	8.7	
Temperature range II	wet concrete		[N/mm²]	[N/mm²]	9.3	9.3	9.3	8.7	8.7	8.0	8.0	7.3
Temperature range l	Flooded	τ _{Rd,ucr}			[IA/WW]	8.9	8.9	8.9	8.3	8.3	7.8	7.8
Temperature range II	bore hole			7.8	7.8	7.8	7.2	7.2	6.7	6.7	6.1	
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in diamond	drilled hole	s (DD)					
Temperature range l	Dry and			10.0	9.3	9.3	8.7	8.0	8.0	7.3	7.3	
Temperature range II	concrete	τ.	[N1/2]	8.0	8.0	7.3	6.7	6.3	6.3	6.0	6.0	
Temperature range I	Flooded	Kd,ucr	[N/mm ²] -	8.3	7.8	7.8	6.2	5.7	5.7	5.2	5.2	
Temperature range II	bore hole			6.7	6.7	6.1	4.8	4.5	4.5	4.3	4.3	

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Design bond resistance in cracked concrete C20/25 in hammer drilled holes (HD) compressed air drilled holes (CD) and with hollow drill bit (HDB)											
Temperature range l	Dry and			4.7	4.7	5.7	5.7	5.7	5.7	5.7	5.7
Temperature range II	wet concrete	_	[N1/2]	4.0	4.0	4.7	4.7	4.7	4.7	4.7	4.7
Temperature range l	$ au_{ ext{Rd,ucr}}$	[N/mm ²]	3.9	3.9	4.7	4.7	4.7	4.7	4.7	4.7	
Temperature range II	bore hole			3.3	3.3	3.9	3.9	3.9	3.9	3.9	3.9

Working life of 100 years

1- Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in hammer c	drilled holes	(HD) and	l compressed	d air drilled	holes (CD)	
Temperature range l	Dry and			13.3	13.3	12.7	12.7	12.0	11.3	10. <i>7</i>	10.7
Temperature range II	wet concrete		[N/mm²]	10.0	10.0	10.0	9.3	8.7	8.7	8.0	8.0
Temperature range l	Flooded	τ _{Rd,ucr}	[14/11111]	11.1	11.1	10.6	10.6	10.0	9.4	8.9	8.9
Temperature range II	bore hole			8.3	8.3	8.3	<i>7</i> .8	7.2	7.2	6.7	6.7
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in hammer c	drilled holes	with hollo	ow drill bit (H	HDB)		
Temperature range l	Dry and wet			11.3	10. <i>7</i>	10. <i>7</i>	10. <i>7</i>	10.0	9.3	9.3	8.7
Temperature range II	concrete		[N/mm²]	9.3	9.3	9.3	8.7	8.7	8.0	8.0	7.3
Temperature range l	Flooded	τ _{Rd,ucr}	[IN/mm ⁻]	8.9	8.9	8.9	8.3	8.3	7.8	7.8	7.2
Temperature range II	bore hole			7.8	7.8	7.8	7.2	7.2	6.7	6.7	6.1
Design bond re	esistance in no	n-crack	ed concrete	C20/25	in diamond	drilled hole	s (DD)				
Temperature range I	Dry and			10.0	9.3	9.3	8.7	8.0	8.0	7.3	<i>7</i> .3
Temperature range II	wet concrete	5.17	[h. / 2]	7.3	7.3	6.7	6.7	6.3	6.0	5.7	5.7
Temperature range I	Flooded	τ _{Rd,ucr}	[N/mm²]	8.3	7.8	7.8	6.2	5.7	5.7	5.2	5.2
Temperature range II	bore hole			6.1	6.1	5.6	4.8	4.5	4.3	4.0	4.0

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Design bond resistance in cracked concrete C20/25 in hammer drilled holes (HD) compressed air drilled holes (CD) and with hollow drill bit (HDB)											
Temperature range l	Dry and			4.3	4.3	5.0	5.0	5.0	5.0	5.0	5.0
Temperature range II	wet concrete		[N1/ 2]	3.7	3.7	4.3	4.3	4.3	4.3	4.3	4.3
Temperature range I	Flooded	$ au_{ ext{Rd,ucr}}$	[N/mm ²]	3.6	3.6	4.2	4.2	4.2	4.2	4.2	4.2
Temperature range II	bore hole			3.1	3.1	3.6	3.6	3.6	3.6	3.6	3.6

Reduction factors

1- Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Reduction facto	or for non-crac	ked cor	crete C20/	25 in han	nmer drilled	holes (HD)	and comp	ressed air d	rilled holes	(CD)	
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N1/ 2]	0.75	0.75	0.79	0.74	0.72	0.76	0.75	0.75
Temperature range I	Flooded	τ _{Rd,ucr}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.75	0.75	0.79	0.74	0.72	0.76	0.75	0.75
Reduction facto	or for non-crac	ked cor	crete C20/	25 in han	nmer drilled	holes with h	ollow dril	l bit (HDB)			
Temperature range I	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N1/ 2]	0.82	0.88	0.88	0.81	0.87	0.86	0.86	0.85
Temperature range I	Flooded	τ _{Rd,ucr}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.88	0.88	0.88	0.87	0.87	0.86	0.86	0.85
Reduction facto	or for non-crac	ked cor	crete C20/	25 in dia	mond drilled	holes (DD)					
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete	[N1/ 2]	0.80	0.86	0.79	0.77	0.79	0.79	0.82	0.82	
Temperature range l	$ au_{ ext{Rd,ucr}}$ Flooded	[N/mm²] -	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	bore hole		0.80	0.86	0.79	0.77	0.79	0.79	0.82	0.82	

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Reduction factor for cracked concrete C20/25 in hammer drilled holes (HD) compressed air drilled holes (CD) and with hollow drill bit (HDB)											
Temperature range I	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete	$ au_{Rd,ucr}$ [[N/mm²]	0.86	0.86	0.82	0.82	0.82	0.82	0.82	0.82
Temperature range I	Flooded			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.86	0.86	0.82	0.82	0.82	0.82	0.82	0.82

Working life of 100 years

1- Non-cracked concrete

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Reduction facto	or for non-crac	ked cor	crete C20/	25 in han	nmer drilled	holes (HD)	and comp	oressed air d	rilled holes	(CD)	
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	concrete		[N/mm²]	0.75	0.75	0.79	0.74	0.72	0.76	0.75	0.75
Temperature range l	Flooded	τ _{Rd,ucr}	[14/mm-]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.75	0.75	0.79	0.74	0.72	0.76	0.75	0.75
Reduction facto	or for non-crac	ked cor	crete C20/	25 in han	nmer drilled	holes with h	ollow dril	l bit (HDB)			
Temperature range l	Dry and wet			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	concrete	τ _{Rd,ucr}	[N/mm²]	0.82	0.88	0.88	0.81	0.87	0.86	0.86	0.85
Temperature range l	Flooded			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.88	0.88	0.88	0.87	0.87	0.86	0.86	0.85
Reduction facto	or for non-crac	ked cor	crete C20/	25 in dia	mond drilled	holes (DD)					
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete	[N/mm²] -	0.73	0.79	0.71	0.77	0.79	0.75	0.77	0.77	
Temperature range I	Flooded $ au_{ ext{Rd,ucr}}$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	bore hole		0.73	0.79	0.71	0.77	0.79	0.75	0.77	0.77	

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Reduction factor for cracked concrete C20/25 in hammer drilled holes (HD) compressed air drilled holes (CD) and with hollow drill bit (HDB)											
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete	_	[N1/ 2]	0.85	0.85	0.87	0.87	0.87	0.87	0.87	0.87
Temperature range I	Flooded	$\tau_{_{ m Rd,ucr}}$	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.85	0.85	0.87	0.87	0.87	0.87	0.87	0.87

Mechanical characteristics

Steel grade	Thread size			M8	M10	M12	M16	M20	M24	M27	M30
	Stressed cross section	A.	[mm ²]	37	58	84	157	245	352	459	561
	Section modulus	W	[mm ³]	31	62	109	277	541	935	1387	1874
	Yield strength	f	[N/mm ²]	240	240	240	240	240	240	240	240
4.6	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	9.0	18.0	31.1	79.6	1 <i>55.7</i>	268.9	398.8	538.9
	Yield strength	f	[N/mm ²]	320	320	320	320	320	320	320	320
4.8	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	12.0	24.0	41.6	106.4	208.0	359.2	532.8	720.0
	Yield strength	f	[N/mm ²]	300	300	300	300	300	300	300	300
5.6	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	11.4	22.2	38.9	99.4	194.0	335.3	498.8	672.5
	Yield strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
5.8	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	15.2	29.6	52	132.8	259.2	448	666.4	898.4
	Yield strength	f	[N/mm ²]	640	640	640	640	640	640	640	640
	Tensile strength	f	$[N/mm^2]$	800	800	800	800	800	800	800	800
8.8	Design bending moment	M ⁰ _{Rd,s}	[Nm]	24.0	48.0	84.0	212.8	415.2	716.8	1066.4	1437.6
	Yield strength	f	[N/mm ²]	210	210	210	210	210	210	210	210
A4-50	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
A4-30	Design bending moment	M ⁰ _{Rd,s}	[Nm]	8.0	15.5	27.7	70.2	136.6	235.7	349.6	472.7
	Yield strength	f	[N/mm ²]	450	450	450	450	450	450	-	-
A4-70	Tensile strength	f	[N/mm ²]	700	700	<i>7</i> 00	<i>7</i> 00	700	700	-	-
A 4- 7 0	Design bending moment	M ^O _{Rd,s}	[Nm]	16.7	33.3	59.0	148.7	291.0	502.6	-	-

Material specifications

Part	Designation			Mate	rial			
Steel,	zinc plated (Steel acc. to	EN 10087:1998 or E	N 102	263:2001)				
- zinc p	lated ≥ 5 µm	acc. to EN ISO 4042	1999					
- hot-dip	o galvanized ≥ 40 µm	acc. to EN ISO 1461	2009	and EN ISO 10684:20	004+AC:2009			
- sherar	dized ≥ 45 µm	acc. to EN ISO 1766	8:201	5				
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture		
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 8%		
1	Anchor rod	acc. to	4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A5 > 8%		
		EN ISO 898- 1:2013	5.6	$f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 300 N/mm ²	A5 > 8%		
			5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A5 > 8%		
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A5 > 12% 3)		
			4	for anchor rod class 4	.6 or 4.8			
2	Hexagon nut	acc. to EN ISO 898- 2:2012	5	for anchor rod class 5	6.6 or 5.8			
			8	for anchor rod class 8	3.8			
3a	Washer			galvanized or sherardize EN ISO 7089:2000, Et	ed N ISO 7093:2000, or E	:N ISO 7094:2000)		
3b	Filling washer	Steel, zinc plated, hot-dip galvanized or sherardized						
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture		
4	Internal threaded anchor	acc. to	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A5 > 8%		
	rod	EN ISO 898- 1:2013	8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A5 > 8%		

Part	Designation			Mate	rial			
Stainl	ess steel A2 (Material 1.4	301 / 1.4303 / 1.43	307 /	1.4567 or 1.4541, acc	. to EN 1088-1:2014)			
Stainl	ess steel A4 (Material 1.4	401 / 1.4404 / 1.45	571 / 1	1.4362 or 1.4578, acc	. to EN 10088-1:2014)			
High o	corrosion resistance ste	el (Material 1.4529 d	or 1.45	65, acc. to EN 10088-	1:2014)			
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture		
1	Anchor rod 1) 4)	acc. to EN ISO 3506-	50	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 12% ³⁾		
		1:2009	70	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 12% 3)		
			80	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 12% 3)		
		acc. to	50	for anchor rod class 5	0			
2	Hexagon nut 1) 4)	EN ISO 3506- 1:2009	70	for anchor rod class 7	0			
		1.2007	80	for anchor rod class 8	0			
3a	Washer	1:2014) Stainless steel A4 (N 10088-1:2014) HCR: Material 1.45	∕lateria 29 or	1.4401 / 1.4404 / 1 1.4565, acc. to EN 100	.4307 / 1.4567 or 1.4 .4571 / 1.4362 or 1.4 088-1:2014 N ISO 7093:2000, or E	578, acc. to EN		
3b	Filling washer	Stainless steel A4. High corrosion resistance steel						
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture		
4	Internal threaded anchor	acc. to	50	f _{uk} = 500 N/mm ²	$f_{yk} = 210 \text{ N/mm}^2$	A5 > 8%		
	rod ^{1) 2)}	EN ISO 3506- 1:2009	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A5 > 8%		

¹⁾ Property class 70 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16

²⁾ for IG-M20 only property class 50

 $^{^{3|}}$ A₅ > 8% fracture elongation if <u>no</u> requirement for performance category C2 exists

 $^{^{\,4)}}$ Property class 80 only for stainless steel A4

Chemical resistance

Chemical agent	Concentration	Resistant	Not Resistant
Acetic acid (Vinegar)	40		•
Acetone	10		•
Ammonia, aqueous solution	5	•	
Aniline	100		•
Beer	100	•	
Benzine (kp 100-140°F)	100	•	
Benzene	100		•
Boric Acid, aqueous solution		•	
Calcium carbonate, suspended in water	All	•	
Calcium chloride, suspended in water		•	
Calcium hydroxide, suspended in water		•	
Carbon tetrachloride	100	•	
Caustic soda (Sodium hydroxide)	40	•	
Citric acid	All	•	
Chlorine	All	•	
Diesel oil	100	•	
Ethyl alcohol, aqueous solution	50		•
Formaldehyde, aqueous solution	30	•	
Formic acid (Methanoic acid)	100		•
Formic acid (Methanoic acid)	10	•	
Freon		•	
Fuel Oil		•	
Gasoline (premium grade)	100	•	
Glycol (Ethylene glycol)		•	
Hydrogen peroxide	30		•
Hydrochloric acid (Muriatic Acid)	Conc.		•
Isopropyl alcohol	100		•
Lactic acid	All		•
Laitance		•	
Linseed oil	100	•	
Lubricating oil	100	•	
Magnesium chloride, aqueous solution	All	•	
Methanol	100		•
Motor oil (SAE 20 W-50)	100	•	
Nitric acid	10		•
Oleic acid	100	•	
Perchloroethylene	100	•	
Petroleum	100	•	
Phenol, aqueous solution (Carbonic acid)	8		•
Phosphoric acid	85	•	
Phosphoric acid	10	•	
Potash lye (potassium hydroxide, 10% and 40% solutions)		•	
Potassium carbonate, aqueous solution	All	•	
Potassium chlorite, aqueous solution	All	•	
Potassium nitrate, aqueous solution	All	•	

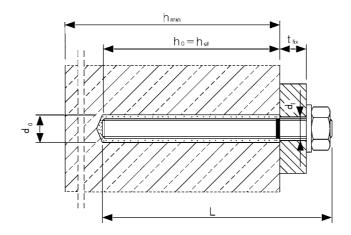
Chemical Agent	Concentration	Resistant	Not Resistant
Sodium carbonate, aqueous solution	All	•	
Sodium chloride, aqueous solution	All	•	
Sodium phosphate, aqueous solution	All	•	
Sodium silicate	All	•	
Sulfuric acid	30		•
Tartaric acid	All	•	
Tetrachloroethylene	100	•	
Toluene			•
Turpentine	100	•	
Trichloroethylene	100		•

Properties of adhesive

Property		Testing method	Result/Mean value		
Stability					
UV-resistance (sunlight)			resistant		
Temperature resistance			72°C		
Water resistance			resistant		
Physical properties					
Flexural properties	Flexural strength	DIN FN 107 1	after 24 hours: 22.2 N/mm²		
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours: 126 N/mm²		
	Tensile strength		< 1.8 ‰		
Tensile properties	Coefficient of elasticity	DIN EN ISO 527-2	97.6		
	Mean strain at fracture		1.78 kg/dm³		
Shrinkage		DIN 52450	≤ 1.4 ‰		
Shore-hardness A		DIN FN ICO OVO	99.4		
Shore-hardness D		DIN EN ISO 868	86.1		
Density		Weighing	≤ 1.50 kg/dm³		
Thermal conductivity		DIN FN 000 15	≤ 1.50 kg/dm³ 0.50 W/mK		
Specific heat capacity		DIN EN 993-15	1.350 J/Kg K		
Electrical resistance		DIN IEC 93	8.0 . 10 ¹² Ω		
Workability features	;	·	·		
Water tightness / Impermeability		DIN EN 12390-8	O mm		
Working time (20°C)			30 min		
Curing time (20°C)			12 hr		
Shelf-life			24 months		

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

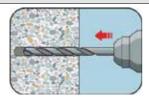
Working and curing times


Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
0°C to 4°C	90 min	144 h
5°C to 9°C	80 min	48 h
10°C to 14°C	60 min	28 h
15°C to 19°C	40 min	18 h
20°C to 24°C	30 min	12 h
25°C to 34°C	12 min	9 h
35°C to 39°C	8 min	6 h
+40°C	8 min	4 h

¹⁾ for wet base material the curing time must be doubled

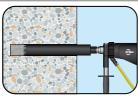
Installation parameters

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35
Effective anchorage depth	h _{ef,min}	[mm]	60	60	<i>7</i> 0	80	90	96	108	120
	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance in hole in the fixture	Prepositioned installation d _f ≤	[mm]	9	12	14	18	22	26	30	33
	Push through installation df	[mm]	12	14	16	20	24	30	33	40
Maximum torque moment	max T _{inst} ≤	[Nm]	10	20	40 1)	60	100	1 <i>7</i> 0	250	300
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀				
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80


 $^{^{1)}}$ Maximum Toruqe moment for M12 with steel Grade 4.6 is 35 Nm $\,$

Installation instructions

A) Bore hole drilling

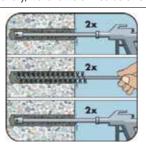

1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. Proceed with Step B1.

1b. Hollow drill bit system (HDB)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. This drilling system removes the dust and cleans the bore hole during drilling. Proceed with Step C.

2c. Diamond drilling (DD)

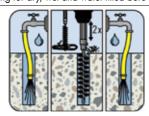

Drill with diamond drill a hole into the base material to the size and embedment depth required by the selected anchor. Proceed with Step B2. In case of aborted drill hole, the drill hole shall be filled

In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

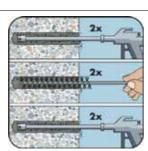
B1) Bore hole cleaning

CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in non-cracked and cracked concrete


- 2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
- Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

B2) Bore hole cleaning


SPCAC: Cleaning for dry, wet and water-filled bore holes for all diameters in non-cracked concrete

Rinsing with water until clear water comes out.

2b. Check the brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.

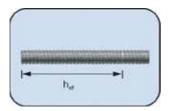
Rinsing again with water until clear water comes out.

2d. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

2e. Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used.

2f. Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

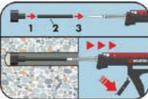

3b.

2c.

C) Preparation of bar and cartridge

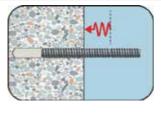
3a. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used.

Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rod. After that, insert the rod in the empty hole to verify hole and depth lv. The anchor should be free of dirt, grease, oil and other foreign material.

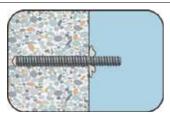


3c. Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard nonuniformly mixed adhesive components.

D) Filling the bore hole



4. Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/working times.

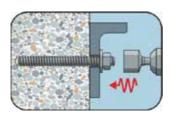

Piston plugs and mixer nozzle extensions shall be used for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction):
 Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250 mm
- Overhead assembly (vertical upwards direction):
 Drill bit-Ø d₀ ≥ 18 mm

E) Setting the rebar

Push the anchor rod into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The rod should be free of dirt, grease, oil or other foreign material.

5b. After inserting the anchor, the annular gap between the anchor rod and concrete, in case of a push through installation, in addition to the fixture, must be completely filled with mortar. Be sure that the anchor rod is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation, fix embedded part (e.g. with wedges).


5c.

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured.

WIT-PE 1000 WITH THREADED ROD (METRIC)

5d.

After full curing, the add-on part can be installed with up to the max. torque by using a calibrated torque wrench. In case of prepositioned installation, the annular gap between the anchor and fixture can be optionally filled with mortar. Therefore, substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar when mortar oozes out of the washer.

Filling quantity

Anchor type: M8 - M30

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30			
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35			
Drill depth	h _o / h ₁	[mm]		= h _{ef}									
Filling volume per 10mm embedment depth		[ml]	0.53	0.70	0.89	1.27	1.78	3.35	3.22	5.10			

Assumed waste of 15 % included.

440 ml

 $585 \, \mathrm{ml}$

1400 ml

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridg	e sizes	Art. no.
440 ml	side-by-side	5918 605 440
585 ml	side-by-side	5918 605 585
1400 ml	side-by-side	5918 605 140

Ø8 - Ø32

Rebar not supplied by Würth

Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
✓	1	1

Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	✓	✓

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt. Berlin	EAD 330499-01-0601	ETA-19/0542, 06.11.2020
European Technical Assessment	DIBt. Berlin	EAD 330087-00-0601	ETA-19/0543, 17.04.2020
ICC-ES Evaluation Report	ICC	AC 308	ELC-4757, 05.2021
Fire resistance	Ingenieurbüro Thiele	TR 020	22022. 14.05.2020
LEED	eurofins		19.09.19
VOC Emissions Test report	eurofins	DEVL 1101903D. DEVL 1104875A	19.09.19
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Rebar material is according to specifications, steel grade B500B
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$

- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characteristic resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective and	chorage	h_{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crack	ced concrete	•											
Tension	C20/25	NI	[LVI]	27.5	42.0	56.8	68.8	68.8	109.0	149.7	149.7	218.2	255.6
	C50/60	N_{Rk}	[kN]	27.5	43.5	62.2	84.7	108. <i>7</i>	172.4	236.7	236.7	338.8	404.2
Shear	≥ C20/25	V_{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	124.3	135.0	169.4	221.1
Cracked o	oncrete												
Tension	C20/25	NI	[LVI]	14.1	19.8	35.2	46.7	48.1	76.3	104.8	104.8	152.8	1 <i>7</i> 8.9
	C50/60	N_{Rk}	[kN]	15.5	21.8	38.8	51.4	58. <i>7</i>	99.9	148.0	154.2	222.1	282.2
Shear	≥ C20/25	V_{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	124.3	135.0	169.4	221.1

Design resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective and	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-cracked concrete													
Tension	C20/25	NI	[].N.[]	19.6	28.0	3 <i>7</i> .8	45.8	45.8	72.7	99.8	99.8	145.5	170.4
	C50/60	N _{Rd}	[kN]	19.6	31.0	44.4	60.5	72.5	114.9	157.8	157.8	230.1	269.4
Shear	≥ C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4
Cracked o	oncrete												
Tension	C20/25	N	[L K I]	9.4	13.2	23.5	31.2	32.1	50.9	69.9	69.9	101.8	119.3
	C50/60	N _{Rd}	[kN]	10.3	14.5	25.8	34.3	39.2	66.6	98.7	102.8	148.0	188.0
Shear	≥ C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4

Recommended/allowable loads 1)

Rebar size				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective an	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crac	ked concrete	•											
Tension	C20/25	N.	[L K I]	14.0	20.0	27.0	32.7	32.7	51.9	71.3	71.3	103.9	121.7
	C50/60	N _{rec}	[kN]	14.0	22.2	31. <i>7</i>	43.2	51.8	82.1	112.7	112.7	164.3	192.5
Shear	≥ C20/25	V	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	59.2	64.3	80. <i>7</i>	105.3
Cracked o	oncrete												
Tension	C20/25	N.	[L K I]	6.7	9.4	16.8	22.3	22.9	36.3	49.9	49.9	72.7	85.2
	C50/60	N _{rec}	[kN]	7,4	10.4	18.5	24.5	28.0	47.6	70.5	73.4	105. <i>7</i>	134.3
Shear	≥ C20/25	V	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	59.2	64.3	80.7	105.3

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{1}}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Rebar material according to specifications, steel grade B500B

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{\rm Rds}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{h$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	210	270	300
Design steel resistance	N _{Rd,s}	[kN]	19.6	31.0	44.4	60.5	79.0	123.4	177.6	192.9	242.0	315.9

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance N_{pd}^0 in case of combined pull-out and concrete cone failure of a single anchor

Rd,p														
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300		
Non-cracked concrete														
Combined pull-out and concrete cone resistance	N O Rd,p	[kN]	21.4	30.2	44.2	58.6	67.0	113.9	158.3	164.9	237.5	301.6		
Cracked concrete														
Combined pull-out concrete cone resistance	N O Rd,p	[kN]	9.4	13.2	23.5	31.2	35.6	60.5	89.7	93.5	134.6	170.9		

•
$$s_{ccp} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$

$$c_{cr,p} = s_{cr,p}/2$$

Where $\tau_{_{\it Rk}}$ is the value $\tau_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{cr,p}$ and spacing $s_{cr,p}$ ($f_{sus} = 1$)

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h_{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	210	270	300
Spacing	S _{cr,p}	[mm]	234	270	330	375	375	510	630	630	792	900
Edge distance	C _{cr,p}	[mm]	117	135	165	188	188	255	315	315	396	450

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

 $^{^{\}mathrm{1}\mathrm{J}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, typ}}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,p, f sy,p	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,p, f sy,p	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,70	0,75	0,90	0,95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 N_{susd} = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f _{sus}	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance N_{DJ} in case of concrete cone failure of a single anchor

Rebar size		ка,с	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Effective anchorage depth	h_{ef}	[mm]	80	90	110	125	125	170	210	210	270	300		
Non-cracked concrete														
Concrete cone resistance	N O Rd,c	[kN]	23.5	28.0	3 <i>7</i> .8	45.8	45.8	72.7	99.8	99.8	145.5	170.4		
Cracked concrete														
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	19.6	26.5	32.1	32.1	50.9	69.9	69.9	101.8	119.3		

Table 9: Characteristic edge distance $c_{cl,N}$ and spacing $s_{cl,N}$

Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h_{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Spacing	\$ _{cr,N}	[mm]	240	270	330	375	375	510	630	630	810	900
Edge distance	C _{cr,N}	[mm]	120	135	165	188	188	255	315	315	405	450

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef}$$
 and $c_{cr,N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef.min} \le h_{ef} \le h_{ef.max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot$$

Table 13: Design resistance N_{Rd so} in case of concrete splitting failure of a single anchor

•	ка, ѕр			, .	•	U						
Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-cracked concrete	•											
Splitting resistance	N O Rd,sp	[kN]	21.4	28.0	37.8	45.8	45.8	72.7	99.8	99.8	145.5	170.4

Table 14: Characteristic edge distance c_{crsp} and spacing s_{crsp}

Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Characteristic spacing	S _{cr,sp}	[mm]	360	420	528	600	590	816	1004	1004	1296	1440
Characteristic edge distance	C _{cr,sp}	[mm]	180	210	264	300	295	408	502	502	648	720
Minimum member thickness	h _{min}	[mm]	110	120	142	161	165	218	274	274	340	380

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and h_{min} according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rdc} = k \cdot min \{N_{Rdc}, N_{Rdc}\}$

3. Concrete edge failure $V_{Rdc} = V_{Rdc}^0 \cdot f_{hV} \cdot f_{hefV} \cdot f_{sV} \cdot f_{c1V} \cdot f_{c2V} \cdot f_{a} \cdot f_{hefV}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{pd}, of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Design steel resistance	V _{Rd,s}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4

2. Design concrete pry-out resistance

$$V_{Rd,c} = k_g \cdot min \{N_{Rd,c}; N_{Rd,c}\}$$

Table 20: factor k_o for calculating design pry-out resistance

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\text{Rd,c}} = V_{\text{Rd,c}}^0 \cdot f_{\text{b,V}} \cdot f_{\text{hef,V}} \cdot f_{\text{s,V}} \cdot f_{\text{c1,V}} \cdot f_{\text{c2,V}} \cdot f_{\text{a}} \cdot f_{\text{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max (10 h_{ef}; 60 d)$. For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance $V_{Rd,c}^{0}$ in case of concrete edge failure

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	210	270	300
Non-cracked concrete	•											
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.8	3.6	4.6	5.6	5.8	8.3	12.2	12.2	14.3	1 <i>7</i> .2
Cracked concrete												
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.0	2.5	3.2	4.0	4.1	5.9	8.6	8.6	10.2	12.2

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

 $^{^{1\!\}mathrm{J}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef.V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s,	/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f	s.V	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

²⁾ strength at 28 days of 150 mm cubes

d. Influence of edge distance c,

Table 25: Influence of edge distance c, on concrete edge resistance

c ₁ /d	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

e. Influence of edge distance c₂

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c, on concrete edge resistance

C _{2/c1} 1)	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c_1 \le c_2$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

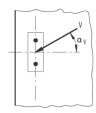


Table 27: Influence of load direction on concrete edge resistance

										90
f _{a.v}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

 $^{^{11}}$ For a \geq 90° the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

					-										
h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h.V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

 V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +72°C	+50°C	+72°C

Working life of 50 years

Thread size	;			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in ham	mer drille	d holes (HD) and	compress	sed air dr	illed hole	s (CD)	
Temperature range I	Dry and			10.7	10.7	10. <i>7</i>	10.7	10.7	10.7	10.0	10.0	10.0	10.0
Temperature range II	wet concrete		[N1/ 2]	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.3	<i>7</i> .3
Temperature range I	Flooded	τ _{Rd,ucr}	[N/mm ²]	8.9	8.9	8.9	8.9	8.9	8.9	8.3	8.3	8.3	8.3
Temperature range II	bore hole			6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.1	6.1
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in ham	mer drille	d holes v	vith hollo	w drill bit	(HDB)			
Temperature range I	Dry and wet			9.3	9.3	8. <i>7</i>	8.7	8.7	8.7	8.7	8.7	8. <i>7</i>	8. <i>7</i>
Temperature range II	concrete	_	[N/mm²]	8.0	8.0	8.0	<i>7</i> .3	7.3	<i>7</i> .3	<i>7</i> .3	<i>7</i> .3	<i>7</i> .3	7.3
Temperature range I	Flooded	τ _{Rd,ucr}	[IN/mm ⁻]	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2
Temperature range II	bore hole			6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1
Design bond	resistance in n	on-crac	ked concret	e C20/2	5 in case	of comp	ressed ai	r cleaning	(CAC)				
Temperature range I	Dry and			9.3	8.7	8.7	8.7	8.0	8.0	7.3	7.3	7.3	7.3
Temperature range II	wet concrete		5	7.3	7.3	6.7	6.7	6.7	6.3	6.3	6.3	6.0	6.0
Temperature range I	$\tau_{\text{\tiny Rd,ucr}}$ Flooded	[N/mm ²]	7.8	7.2	7.2	7.2	5.7	5.7	5.2	5.2	5.2	5.2	
Temperature range II	bore hole			6.1	6.1	5.6	5.6	4.8	4.5	4.5	4.5	4.3	4.3

2- Cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond drill bit (HDB)		racked	concrete C2	20/25 in	hammer	drilled ho	oles (HD)	compres	sed air di	rilled hole	es (CD) a	nd with h	ollow
Temperature range I	Dry and			4.7	4.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Temperature range II	wet concrete		[N/mm²]	4.0	4.0	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Temperature range I	Flooded	T _{Rd,cr}	[IN/mm ⁻]	3.9	3.9	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Temperature range II	bore hole			3.3	3.3	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9

Working life of 100 years

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond	resistance in r	on-crac	ked concret	e C20/2	5 in ham	mer drille	d holes (HD) and	compres	sed air dr	illed hole	s (CD)	
Temperature range I	Dry and			10.7	10.7	10.7	10.7	10.7	10.7	10.0	10.0	10.0	10.0
Temperature range II	wet concrete		[N/mm ²]	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	<i>7</i> .3	7.3
Temperature range l	Flooded	τ _{Rd,ucr}	[IN/mm²]	8.9	8.9	8.9	8.9	8.9	8.9	8.3	8.3	8.3	8.3
Temperature range II	bore hole			6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.1	6.1
Design bond	resistance in r	on-crac	ked concret	e C20/2	5 in ham	mer drille	d holes v	vith hollo	w drill bit	(HDB)			
Temperature range l	Dry and			9.3	9.3	8.7	8.7	8.7	8.7	8.7	8.7	8. <i>7</i>	8. <i>7</i>
Temperature range II	wet concrete		[N1/2]	8.0	8.0	8.0	7.3	7.3	7.3	7.3	7.3	<i>7</i> .3	7.3
Temperature range I	Flooded	$ au_{ m Rd,ucr}$	[N/mm²]	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2
Temperature range II	bore hole			6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1
Design bond	resistance in r	on-crac	ked concret	e C20/2	5 in case	of comp	ressed ai	r cleaning	(CAC)				
Temperature range l	Dry and			9.3	8.7	8.7	8.7	8.0	8.0	7.3	7.3	<i>7</i> .3	<i>7</i> .3
Temperature range II	wet concrete $\tau_{\rm Rd,ucr}$ Flooded	[N. 1 / 2]	<i>7</i> .3	7.3	6.7	6.7	6.7	6.3	6.3	6.3	6.0	6.0	
Temperature range l		[N/mm ²]	<i>7</i> .8	7.2	7.2	7.2	5.7	5.7	5.2	5.2	5.2	5.2	
Temperature range II	bore hole			6.1	6.1	5.6	5.6	4.8	4.5	4.5	4.5	4.3	4.3

2- Cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Design bond drill bit (HDB)		racked	concrete C2	20/25 in	hammer	drilled ho	oles (HD)	compres	sed air dı	rilled hole	es (CD) a	nd with h	ollow
Temperature range I	Dry and			4.3	4.3	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Temperature range II	wet concrete		[N1 / 2]	3.7	3.7	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Temperature range III	Flooded	τ _{Rd,cr}	[N/mm ²]	3.6	3.6	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Temperature range III	bore hole			3.1	3.1	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6

Reduction factors

Working life of 50 years

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fac	tor for non-cra	icked co	oncrete C20	/25 in h	ammer dr	illed hole	s (HD) a	nd compi	ressed air	drilled h	oles (CD))	
Temperature range I	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	concrete	_	[N/mm²]	0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.80	0.73	0.73
Temperature range I	Flooded	τ _{Rd,ucr}	[14/mm-]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.80	0.73	0.73
Reduction fac	tor for non-cra	icked co	oncrete C20	/25 in h	ammer dr	illed hole	s with ho	llow drill	bit (HDB)			
Temperature range I	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N.L./ 2]	0.86	0.86	0.92	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Temperature range I	Flooded	τ _{Rd,ucr}	[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Reduction fac	tor for non-cra	icked co	oncrete C20	/25 in co	ase of co	mpressed	air clear	ning (CAC	C)				
Temperature range I	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N/mm²]	0.79	0.85	0.77	0.77	0.83	0.79	0.86	0.86	0.82	0.82
Temperature range I	$ au_{ ext{Rd,ucr}}$	[[14/mm²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	Flooded bore hole			0.79	0.85	0.77	0.77	0.83	0.79	0.86	0.86	0.82	0.82

2- Cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fac (HDB)	tor for cracked	d concr	ete C20/25	in hamm	er drilled	holes (H	D) comp	ressed aii	r drilled h	ioles (CD) and wit	h hollow	drill bit
Temperature range I	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N/mm ²]	0.86	0.86	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Temperature range I	Flooded	τ _{Rd,cr}	[IN/mm-]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	bore hole			0.86	0.86	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82

Working life of 100 years

Thread size	;			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32		
Reduction fac	tor for non-cra	icked co	oncrete C20	/25 in h	ammer di	illed hole	s (HD) a	nd compr	essed air	drilled h	oles (CD))			
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range II	concrete		[N1 / 2]	0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.80	0.73	0.73		
Temperature range I	Flooded	τ _{Rd,ucr}	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range II	bore hole			0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.80	0.73	0.73		
Reduction fac	tor for non-cra	icked c	oncrete C20	/25 in h	ammer dı	illed hole	s with ho	llow drill	bit (HDB)					
Temperature range l	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range II	wet concrete		[N.L./ 2]	0.86	0.86	0.92	0.85	0.85	0.85	0.85	0.85	0.85	0.85		
Temperature range I	Flooded	τ _{Rd,ucr}	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range II	bore hole			0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85		
Reduction fac	tor for non-cra	icked co	oncrete C20	/25 in co	ase of co	mpressed	l air clear	ning (CAC	C)						
Temperature range I	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range II	concrete			τ _{Rd,ucr} [N/n	UCT [N/mm²] -	0.79	0.85	0.77	0.77	0.83	0.79	0.86	0.86	0.82	0.82
Temperature range I	$ au_{ ext{Rd,ucr}}$		1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	bore hole			0.79	0.85	0.77	0.77	0.83	0.79	0.86	0.86	0.82	0.82		

2- Cracked concrete

Thread size	•			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction fac (HDB)	tor for cracked	d concr	ete C20/25	in hamm	er drilled	holes (H	D) comp	ressed air	r drilled h	ioles (CD) and wit	h hollow	drill bit
Temperature range I	Dry and			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	wet concrete		[N1 / 2]	0.85	0.85	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Temperature range III	Flooded	T _{Rd,cr}	[N/mm ²]	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range III	bore hole			0.85	0.85	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87

Mechanical characteristics

Steel grade	Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
	Stressed cross section	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
	Section modulus	W	[mm³]	50	98	1 <i>7</i> 0	269	402	<i>7</i> 85	13 <i>57</i>	1534	2155	3217
	Yield strength	f _y	[N/mm ²]	460	460	460	460	460	460	460	460	460	460
460A	Tensile strength	f	[N/mm ²]	483	483	483	483	483	483	483	483	483	483
	Design bending moment	M ^O _{Rd,s}	[Nm]	19	38	66	104	155	303	524	593	833	1243
	Yield strength	fy	[N/mm ²]	460	460	460	460	460	460	460	460	460	460
460B	Tensile strength	fu	[N/mm ²]	497	497	497	497	497	497	497	497	497	497
	Design bending moment	M ^O _{Rd,s}	[Nm]	20	39	68	107	160	312	540	610	857	1279
	Yield strength	f_y	[N/mm ²]	500	500	500	500	500	500	500	500	500	500
B500B	Tensile strength	f	[N/mm ²]	550	550	550	550	550	550	550	550	550	550
	Design bending moment	M ^O _{Rd,s}	[Nm]	22	43	75	118	177	345	597	675	948	1415

Material specifications

Product form			Bars and de-coiled rod	s
Class		A	В	V
Characteristic yield strer	igth f _{yk} or f _{0,2k} (MPa)		400 to 600	
linimum value of $k = (f_y/f_y)_k$		≥ 1,05	≥ 1,08	≥ 1,15 < 1,35
Characteristic strain at n	naximum force, ε _{uk} (%)	≥ 2,5	≥ 5,0	≥ 7,5
Bendability			Bend/Rebend test	
Maximum deviation rom Nominal bar size (mm) rom individual bar ≤ 8			+/- 6,0	
or wire) (%)	> 8		+/- 4,5	

Chemical resistance

Chemical agent	Concentration	Resistant	Not Resistant
Acetic acid (Vinegar)	40		•
Acetone	10		•
Ammonia, aqueous solution	5	•	
Aniline	100		•
Beer	100	•	
Benzine (kp 100-140°F)	100	•	
Benzene	100		•
Boric Acid, aqueous solution		•	
Calcium carbonate, suspended in water	All	•	
Calcium chloride, suspended in water		•	
Calcium hydroxide, suspended in water		•	
Carbon tetrachloride	100	•	
Caustic soda (Sodium hydroxide)	40	•	
Citric acid	All	•	
Chlorine	All	•	
Diesel oil	100	•	
Ethyl alcohol, aqueous solution	50		•
Formaldehyde, aqueous solution	30	•	
Formic acid (Methanoic acid)	100		•
Formic acid (Methanoic acid)	10	•	
Freon		•	
Fuel Oil		•	
Gasoline (premium grade)	100	•	
Glycol (Ethylene glycol)		•	
Hydrogen peroxide	30		•
Hydrochloric acid (Muriatic Acid)	Conc.		•
Isopropyl alcohol	100		•
Lactic acid	All		•
Laitance	7.01	•	
Linseed oil	100	•	
Lubricating oil	100	•	
Magnesium chloride, aqueous solution	All	•	
Methanol	100		•
Motor oil (SAE 20 W-50)	100	•	
Nitric acid	100		•
Oleic acid	100	•	
Perchloroethylene	100	•	
Petroleum	100	•	
Phenol, aqueous solution (Carbonic acid)	8		•
Phosphoric acid	85	•	
Phosphoric acid	10	•	
Potash lye (potassium hydroxide, 10% and 40% solutions)	10	•	
	All	•	
Potassium carbonate, aqueous solution			
Potassium chlorite, aqueous solution	All All	•	
Potassium nitrate, aqueous solution			
Sodium carbonate, aqueous solution	All	•	
Sodium chloride, aqueous solution	All All	•	
Sodium phosphate, aqueous solution			
Sodium silicate	All	•	
Sulfuric acid	30		•
Tartaric acid	All	•	
Tetrachloroethylene T. I.	100	•	_
Toluene			•
Turpentine	100	•	
Trichloroethylene	100		•

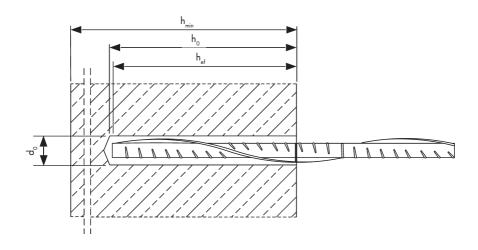
Properties of adhesive

Property		Testing method	Result / Mean value
Stability			
UV-resistance (sunlight)			resistant
Temperature resistance			72°C
Water resistance			resistant
Physical properties			
Flexural properties	Flexural strength	DIN FN 107 1	after 24 hours: 66,0 N/mm²
Compressive properties	Compressive strength	DIN EN 196-1 DIN EN 196-1 DIN EN ISO 527-2 DIN 52450 DIN EN ISO 868 Weighing DIN EN 993-15 DIN IEC 93	after 24 hours:122 N/mm²
Fensile properties	Tensile strength		44,2 N/mm²
	Coefficient of elasticity	DIN EN ISO 527-2	6,300 N/mm ²
	Mean strain at fracture		1,0 %
Shrinkage		DIN 52450	≤ 1,4 ‰
Shore-hardness A		DINI FALICO 0/0	99,4
Shore-hardness D		DIN EN 150 868	86,1
Density		Weighing	≤ 1,50 kg/dm³
Thermal conductivity		DIN FN 002 15	0,50 W/mK
Specific heat capacity		DIIN EIN 993-13	1,350 J/Kg K
Electrical resistance		DIN IEC 93	8,0 . 10 ₁₂ Ω
Workability features			
Water tightness / impermeability		DIN EN 12390-8	O mm
Working time (20°C)			3 min
Curing time (20°C)			30 mins
Shelf-life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

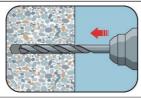
Working and curing times

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
0°C to 4°C	90 min	144 h
5°C to 9°C	80 min	48 h
10°C to 14°C	60 min	28 h
15°C to 19°C	40 min	18 h
20°C to 24°C	30 min	12 h
25°C to 34°C	12 min	9 h
35°C to 39°C	8 min	6 h
+40°C	8 min	4 h


 $^{^{\}rm 1)}$ for wet base material the curing time must be doubled

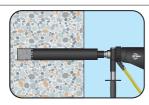
Installation parameters

Rebar size			Ø	8 ¹)	Ø 1	O ¹⁾	Ø 1	2 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 2	24 ¹⁾	Ø 2	25 ¹⁾	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	3	10	0	1	2	14	16	20	2	4	2	5	28	32
Nominal drill hole diameter	d _o	[mm]	10	12	12	14	14	16	18	20	25	30	32	30	32	35	40
Effective anchorage	h _{ef,min}	[mm]	6	0	6	0	7	0	75	80	90	9	6	10	00	112	128
l denth	h _{ef,max}	[mm]	16	50	20	00	24	10	280	320	400	48	30	50	00	112 560	640
Minimum thickness of	h _{min}	[mm]				200 240 30 mm ≥ 0 mm					h	_f + 2	d _o				
Minimum spacing	S _{min}	[mm]	4	0	5	0	6	0	70	75	85	12	20	12	20	130	150
Minimum edge distance	C _{min}	[mm]	3	5	40	0	4	5	50	50	60	7	0	7	0	75	85


¹⁾ both nominal drill hole diameter can be used

Installation instructions

A) Bore hole drilling


a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. Proceed with Step B1.

1b. Hollow drill bit system (HDB)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. This drilling system removes the dust and cleans the bore hole during drilling. Proceed with Step C.

Diamond drilling (DD)

1 c.

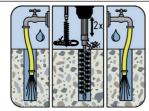
2b.

2c.

Drill with diamond drill a hole into the base material to the size and embedment depth required by the selected anchor. Proceed with Step B2.

B1) Bore hole cleaning

CAC: Cleaning for all bore hole diameter and bore hole depth with drilling method HD and CD


Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

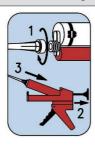
Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used.

Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

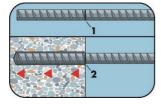
B2) Bore hole cleaning

- 2a. Rinsing with water until clear water comes out.
- **2b.** Check the brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.
- **2c.** Rinsing again with water until clear water comes out.

Attention! Standing water in the bore hole must be removed before proceeding to cleaning.

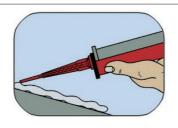


- 2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,m} a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
- **2c.** Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.


After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

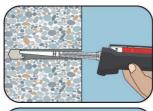
3b.

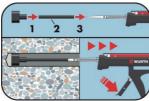
C) Preparation of bar and cartridge



Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used.

Prior to inserting the reinforcing bar into the filled bore hole, the position of the embedment depth shall be marked (e.g. with tape) on the reinforcing bar. After that, insert the bar in the empty hole to verify hole and depth lv. The anchor should be free of dirt, grease, oil and other foreign material.

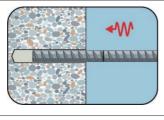


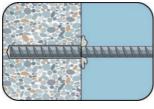

Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components.

3c.

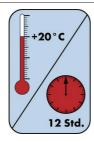
5c.

D) Filling the bore hole




Starting from the bottom or back of the cleaned bore hole, fill the hole with adhesive until the level mark at the mixer extension is visible at the top of the hole. For embedment larger than 190 mm, an extension nozzle shall be used. Slowly withdraw the static mixing nozzle. Using a piston plug during injection of the mortar helps to avoid creating air pockets.

For overhead and horizontal installation and bore holes deeper than 240 mm, a piston plug and the appropriate mixer extension must be used. Observe the gel-/working times.


E) Setting the rebar

Push the reinforcing bar into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material.

5b. Be sure that the bar is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For horizontal and overhead installation, fix embedded part (e.g. with wedges).

Observe gelling time t_{gel}. Attend that the gelling time can vary according to the base material temperature. Do not move or load the bar until full curing time t_{cure} has elapsed.

Filling Quantity

Anchor type: M8 - M30

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	25	32	32	35	40
Drill depth	h _o / h ₁	[mm]		=								
Filling volume per 10mm embedment depth		[ml]	0.81	1.01	1.21	1.43	1.66	2.59	4.85	4.47	5.07	6.62

Assumed waste of 15 % included.

WIT-PE 510 WITH THREADED ROD (METRIC)

440 ml

585 ml

Galvanized (5 microns): M8 - M30

Stainless steel - A4 (AISI 316): M8 - M30

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridge	e sizes	Art. no.
440 ml	side-by-side	5918 615 440
585 ml	side-by-side	5918 615 585

Type of installation		
Pre-positioned	In-place	Stand-off
√	1	1

Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
√	✓	/

Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	-	1

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt. Berlin	EAD 330499-01-0601	ETA-20/1038. 02.02.2021

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Anchor material according is to specifications.
 steel grade 5.8 unless otherwise stated
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characterstic resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete											
Tension	C20/25	N.	[LVI]	18.0	29.0	42.0	68.8	109.0	149.7	182.9	218.2
	C50/60	N _{Rk}	[kN]	18.0	29.0	42.0	78.0	122.0	176.0	230.0	280.0
Shear	≥ C20/25	V _{Rk}	[kN]	11.0	17.0	25.0	47.0	74.0	106.0	138.0	168.0
Cracked concrete											
Tension	C20/25	N.	[LVI]	14.1	19.8	29.0	44.0	74.8	95.0	122.1	152.7
	C50/60	N _{Rk}	[kN]	15.5	21.8	31.9	48.4	82.2	104.5	134.4	167.9
Shear	≥ C20/25	V _{Rk}	[kN]	11.0	17.0	25.0	47.0	74.0	106.0	138.0	168.0

Design resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete											
Tension	C20/25	N	[LVI]	12.0	19.3	27.0	32.7	51.9	<i>7</i> 1.3	87.1	103.9
	C50/60	N _{Rd}	[kN]	12.0	19.3	28.0	46.1	78.3	107.8	137.7	164.3
Shear	≥ C20/25	V _{Rd}	[kN]	8.8	13.6	20.0	37.6	59.2	84.8	110.4	134.4
Cracked concrete											
Tension	C20/25	N	[L K I]	6.7	9.4	13.8	20.9	35.6	45.2	58.2	72.7
	C50/60	N _{Rd}	[kN]	7.4	10.4	15.2	23.0	39.2	49.8	64.0	80.0
Shear	≥ C20/25	V _{Rd}	[kN]	8.8	13.6	20.0	37.6	59.2	84.8	110.4	134.4

WIT-PE 510 WITH THREADED ROD (METRIC)

Recommended/allowable loads 1)

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete											
Tension	C20/25		[kN]	8.6	13.8	19.3	23.4	37.1	50.9	62.2	74.2
	C50/60	N _{rec}		8.6	13.8	20.0	32.9	56.0	77.0	98.4	117.4
Shear	≥ C20/25	V	[kN]	6.3	9.7	14.3	26.9	42.3	60.6	<i>7</i> 8.9	96.0
Cracked concrete											
Tension	C20/25	NI.	[LVI]	4.8	6.7	9.9	15.0	25.4	32.3	41.5	51.9
	C50/60	N _{rec}	[kN]	5.3	7.4	10.9	16.5	28.0	35.5	45.7	<i>57</i> .1
Shear	≥ C20/25	V	[kN]	6.3	9.7	14.3	26.9	42.3	60.6	78.9	96.0

 $^{^{1)}}$ Material safety factor γ_M and safety factor for action γ_L = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Anchor material according to specifications, steel grade 5.8 unless otherwise stated in the tables

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{\rm Rds}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{hef} \cdot$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		$h_{\rm ef}$	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Design steel resistance	5.8	N _{Rd,s}	[kN]	12.0	19.3	28.0	52.0	81.3	11 <i>7</i> .3	153.3	186.7
	8.8	N _{Rd,s}	[kN]	19.3	30.7	44.7	83.3	130.7	188.0	245.3	299.3
	A4	N _{Rd,s}	[kN]	13.9	21.9	31.6	58.8	91.4	132.1	80.4	98.3

WIT-PE 510 WITH THREADED ROD (METRIC)

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance $N_{s,t}^0$ in case of combined pull-out and concrete cone failure of a single anchor

Rd,p											
Thread size			M8	M10	M12	M16	M20	M24	M27	M30	
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270	
Non-cracked concrete											
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	14.4	20.2	29.6	41.9	71.2	98.0	126.0	157.5	
Cracked concrete											
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	6.7	9.4	13.8	20.9	35.6	45.2	58.2	72.7	

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$
 • $c_{cr,p} = s_{cr,p}/2$

$$c_{cr,p} = s_{cr,p}/2$$

Where $au_{_{\mathit{Rk}}}$ is the value $au_{_{\mathit{Rk,ucr}}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{cr,p}$ and spacing $s_{cr,p}$ ($f_{sus} = 1$)

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,p}	[mm]	226	270	330	375	510	630	711	790
Edge distance	C _{cr,p}	[mm]	113	135	165	188	255	315	355	395

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, \, typ}}$$

Consider the approved range of embedment $h_{_{ef,min}} \le h_{_{ef}} \le h_{_{ef,max}}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,p, f sy,p	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,p, f sy,p	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,p}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
f _{cy, p}																			

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 N_{susd} = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a	sus	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f	ius	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80	0.70	0.60

3. Design Concrete Cone Resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance N_{Rdc}^0 in case of concrete cone failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.8	20.0	27.0	32.7	51.9	<i>7</i> 1.3	8 <i>7</i> .1	103.9
Cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	11.7	14.0	18.9	22.9	36.3	49.9	61.0	72.7

Table 9: Characteristic edge distance $c_{cl,N}$ and spacing $s_{cl,N}$

Thread size			8M	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,N}	[mm]	240	270	330	375	510	630	720	810
Edge distance	C _{cr,N}	[mm]	120	135	165	188	255	315	360	405

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{crN} = 3 h_{ef}$$
 and $c_{crN} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef, typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
$f_{cx,2}$	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
f																			

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_$$

Table 13: Design resistance N_{Rd sp} in case of concrete splitting failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete										
Concrete splitting resistance	N ⁰ _{Rd,c}	[kN]	14.4	20.0	27.0	32.7	51.9	71.3	87.1	103.9

Table 14: Characteristic edge distance c and spacing s

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	S _{cr,sp}	[mm]	360	420	528	600	816	1008	1152	1296
Edge distance	C _{cr,sp}	[mm]	180	210	264	300	408	504	576	648
Minimum member thickness	h _{min}	[mm]	110	120	140	161	218	266	304	340

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$\mathrm{s}_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \mathrm{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and $\boldsymbol{h}_{\scriptscriptstyle min}$ according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , f sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1$$
 $f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$

Table 17: Influence of edge distance on splitting resistance

			0		· · · · · · · · ·	0 -													
c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.50	0.60	0.63	0.65	0.60	0.70	0.73	0.75	0.70	0.00	0.03	0.05	0.00	0.95	0.00	0.95	0.00	1.00
f _{cy}	0.55	0.56	0.00	0.03	0.03	0.00	0.70	0.73	0.73	0.76	0.80	0.83	0.65	0.88	0.83	0.88	0.73	0.76	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

								_												
h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f_	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,p}, N_{Rd,c}\}$

 $\textbf{3. Concrete edge failure} \qquad V_{\textit{Rd,c}} = V_{\textit{Rd,c}}^{\textit{0}} \cdot f_{\textit{b,V}} \cdot f_{\textit{hef,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c1,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
	5.8		[kN]	8.8	13.6	20.0	37.6	59.2	84.8	110.4	134.4
Design steel resistance	8.8	V _{Rd,s}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	1 <i>7</i> 9.2
	A4		[kN]	8.3	12.8	19.2	35.3	55.1	79.5	48.3	58.8

2. Design concrete pry-out resistance

$$V_{\rm Rd.c} = k_{\rm g} \cdot \min \left\{ N_{\rm Rd.p}; N_{\rm Rd.c} \right\}$$

Table 20: factor k_g for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\mathrm{Rd,c}} = \ V_{\mathrm{Rd,c}}^0 \cdot f_{\mathrm{b,V}} \cdot f_{\mathrm{hef,V}} \cdot f_{\mathrm{s,V}} \cdot f_{\mathrm{c1,V}} \cdot f_{\mathrm{c2,V}} \cdot f_{\mathrm{a}} \cdot f_{\mathrm{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance $V_{0,1}^0$ in case of concrete edge failure

Rd,c cacc c										
Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete										
Basic design edge resistance	V ^O _{Rd,c}	[kN]	2.8	3.6	4.6	5.8	8.3	10.3	13.1	15.2
Cracked concrete										
Basic design edge resistance	V O Rd,c	[kN]	2.0	2.5	3.2	4.1	5.9	<i>7</i> .3	9.3	10.7

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef,V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

^{1]} Always choose the lowest value of the spacing s. when there are different spacing in the row closest to the edge.

d. Influence of edge distance c,

Table 25: Influence of edge distance c, on concrete edge resistance

C _{1/d}	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1.V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

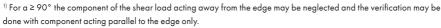
²⁾ strength at 28 days of 150 mm cubes

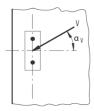
e. Influence of edge distance c,

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c, on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00


^{1]} Distance to the second edge: $c_1 \le c_2$


f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +60°C	+35°C	+60°C
Temperature range III	- 40°C to +70°C	+43°C	+70°C

Working life of 50 years

1- Non-cracked concrete

Thread size			M8	M10	M12	M16	M20	M24	M27	M30		
	Design bond resistance in non-cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)											
Temperature range l	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.14	7.14	7.14	6.67	6.67	6.19	6.19	6.19		
Temperature range II		$\tau_{_{Rd,ucr}}$	[N/mm²]	4.76	4.76	4.76	4.52	4.52	4.29	4.29	4.29	
Temperature range III			3.33	3.33	3.33	3.10	3.10	2.86	2.86	2.86		

2- Cracked concrete

Thread size			M8	M10	M12	M16	M20	M24	M27	M30		
0	Design bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)											
Temperature range l	Dry, wet concrete and $\tau_{\text{Rd,ucr}}$			3.33	3.33	3.33	3.33	3.33	2.86	2.86	2.86	
Temperature range II		$\tau_{_{Rd,ucr}}$	[N/mm²]	2.38	2.38	2.38	2.38	2.38	2.14	2.14	2.14	
Temperature range III				1.67	1.67	1.67	1.67	1.67	1.43	1.43	1.43	

Reduction factors

Working life of 50 years

1- Non-cracked concrete

Thread size			M8	M10	M12	M16	M20	M24	M27	M30		
Reduction factor holes (CD)	Reduction factor for non-cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)											
Temperature range l	Dry, wet concrete and floo- ded bore hole			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II		$\tau_{_{Rd,ucr}}$	[N/mm²]	0.67	0.67	0.67	0.68	0.68	0.69	0.69	0.69	
Temperature range III				0.47	0.47	0.47	0.46	0.46	0.46	0.46	0.46	

2- Cracked concrete

Thread size			M8	M10	M12	M16	M20	M24	M27	M30	
Reduction factor for in cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and compressed air drilled holes (CD)											
Temperature range l	Dry, wet concrete and flooded bore hole			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II		$\tau_{_{Rd,ucr}}$	[N/mm²]	0.71	0.71	0.71	0.71	0.71	0.75	0.75	0.75
Temperature range III				0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50

Mechanical characteristics

Steel grade	Thread size			M8	M10	M12	M16	M20	M24	M27	M30
	Stressed cross section	A,	[mm ²]	37	58	84	157	245	352	459	561
	Section modulus	W	[mm ³]	31	62	109	277	541	935	1387	1874
	Yield strength	f	[N/mm ²]	240	240	240	240	240	240	240	240
4.6	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	9.0	18.0	31.1	<i>7</i> 9.6	1 <i>55.7</i>	268.9	398.8	538.9
	Yield strength	f	$[N/mm^2]$	320	320	320	320	320	320	320	320
4.8	Tensile strength	f	$[N/mm^2]$	400	400	400	400	400	400	400	400
4.0	Design bending moment	M ^O _{Rd,s}	[Nm]	12.0	24.0	41.6	106.4	208.0	359.2	532.8	720.0
	Yield strength	f	$[N/mm^2]$	300	300	300	300	300	300	300	300
5.6	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M ⁰ _{Rd,s}	[Nm]	11.4	22.2	38.9	99.4	194.0	335.3	498.8	672.5
	Yield strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
5.8	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M ^O _{Rd,s}	[Nm]	15.2	29.6	52	132.8	259.2	448	666.4	898.4
	Yield strength	f	$[N/mm^2]$	640	640	640	640	640	640	640	640
	Tensile strength	f	[N/mm ²]	800	800	800	800	800	800	800	800
8.8	Design bending moment	$M^0_{Rd,s}$	[Nm]	24.0	48.0	84.0	212.8	415.2	716.8	1066.4	1437.6
	Yield strength	f	[N/mm ²]	210	210	210	210	210	210	210	210
A4-50	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
A4-3U	Design bending moment	M ⁰ _{Rd,s}	[Nm]	8.0	15.5	27.7	70.2	136.6	235.7	349.6	472.7
	Yield strength	f	[N/mm ²]	450	450	450	450	450	450	-	-
A4-70	Tensile strength	f	[N/mm ²]	700	700	700	700	700	700	-	-
A4-7 U	Design bending moment	M ^O _{Rd,s}	[Nm]	16.7	33.3	59.0	148.7	291.0	502.6	-	-

Material specifications

Part	Designation			Mate	rial						
Steel,	zinc plated (Steel acc. to	EN 10087:1998 or E	N 102	263:2001)							
- zinc p	lated ≥ 5 µm	acc. to EN ISO 4042	:1999								
- hot-dip	o galvanized ≥ 40 µm	acc. to EN ISO 1461	:2009	and EN ISO 10684:20	004+AC:2009						
- sherar	rdized ≥ 45 µm	acc. to EN ISO 1766	cc. to EN ISO 17668:2016								
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 8%					
1	Anchor rod	acc. to EN ISO 898-	4.8	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 8%					
		1:2013	5.6	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 8%					
			5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A5 > 8%					
			8.8	$f_{uk} = 800 \text{ N/mm}^2$	f _{vk} = 640 N/mm ²	A5 > 12% ³⁾					
			4	for anchor rod class 4	.6 or 4.8						
2	Hexagon nut	acc. to EN ISO 898- 2:2012	5	for anchor rod class 5.6 or 5.8							
			8	for anchor rod class 8	3.8						
3a	Washer			galvanized or sherardize EN ISO 7089:2000, EI	ed N ISO 7093:2000, or E	EN ISO 7094:2000)					
3b	Filling washer	Steel, zinc plated, h	ot-dip g	galvanized or sherardize	ed						
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
4	Internal threaded anchor	acc. to	5.8	f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A5 > 8%					
	rod	EN ISO 898- 1:2013	8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A5 > 8%					

Part	Designation			Mate	rial				
Stainl	ess steel A2 (Material 1.4	301 / 1.4303 / 1.43	307 / 1	1.4567 or 1.4541, acc	. to EN 1088-1:2014)				
Stainl	ess steel A4 (Material 1.4	401 / 1.4404 / 1.45	571 / 1	1.4362 or 1.4578, acc	. to EN 10088-1:2014)				
High	corrosion resistance ste	el (Material 1.4529 d	or 1.45	65, acc. to EN 10088-	1:2014)				
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture			
1	Anchor rod 1) 4)	acc. to EN ISO 3506-	50	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 12% ³⁾			
		1:2009		f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A5 > 12% 3)			
			80	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 12% 3)			
		acc. to	50	for anchor rod class 50					
2	Hexagon nut 1) 4)	EN ISO 3506- 1:2009	70	for anchor rod class 7	' 0				
		2007	80	for anchor rod class 8	80				
3а	Washer	1:2014) Stainless steel A4 (N 10088-1:2014) HCR: Material 1.45	Nateria 29 or	1.4401 / 1.4404 / 1 1.4565, acc. to EN 100	.4571 / 1.4362 or 1.4				
3b	Filling washer	Stainless steel A4. H	ligh co	rrosion resistance steel					
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture			
4	Internal threaded anchor	acc. to	50	f _{uk} = 500 N/mm ²	$f_{yk} = 210 \text{ N/mm}^2$	A5 > 8%			
	rod ^{1) 2)}	EN ISO 3506- 1:2009	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A5 > 8%			

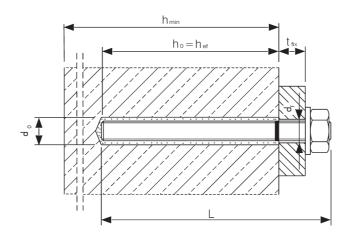
 $^{^{1)}}$ Property class 70 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16

²⁾ for IG-M20 only property class 50

 $^{^{3]}}$ $\rm\ A_{5}\!>\!8\%$ fracture elongation if \underline{no} requirement for performance category C2 exists

⁴⁾ Property class 80 only for stainless steel A4

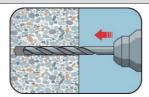
Working and curing times


Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
5°C to 9°C	80 min	60 h
10°C to 14°C	60 min	48 h
15°C to 19°C	40 min	24 h
20°C to 24°C	30 min	12 h
25°C to 34°C	12 min	10 h
35°C to 39°C	8 min	<i>7</i> h
+40°C	8 min	4 h

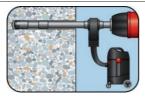
 $^{^{\}rm 1)}$ for wet base material the curing time must be doubled

Installation parameters

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35
Eff. c	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance in	Prepositioned installation d _f ≤	[mm]	9	12	14	18	22	26	30	33
hole in the fixture	Push through installation df	[mm]	12	14	16	20	24	30	33	40
Maximum torque moment	max T _{inst} ≤	[Nm]	10	20	40 1)	60	100	170	250	300
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 3	80 mm ≥ 1	00 mm			h _{ef} + 2d ₀		
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80


 $^{^{\}rm 1)}$ Maximum torque moment for M12 with steel Grade 4.6 is 35 Nm

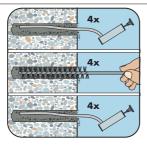
Installation instructions


A) Bore hole drilling

1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. Proceed with Step B1.

In case of aborted drill hole, the drill hole shall be filled with mortar.


1b. Hollow drill bit system (HDB)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step C. In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

B1) Bore hole cleaning

MAC: Cleaning for dry and wet bore holes with diameter d0 ≤ 20 mm and bore hole depth h ≤ 10 dnom (non-cracked concrete only!)

Starting from the bottom or back of the bore hole, blow the hole clean with a hand pump a minimum of <u>four</u> times until return air stream is free of noticeable dust.

2b. Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of <u>four</u> times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension shall be used.

Finally blow the hole clean again with a hand pump a minimum of <u>four</u> times until return air stream is free of noticeable dust.

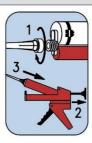
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.

B2) Bore hole cleaning

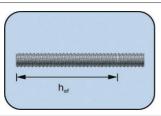
CAC: Cleaning for dry, wet and water-filled bore holes for all diameters in non-cracked and cracked concrete

Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

2b. Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used.


Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must no contaminate the bore hole again.


3b.

3c.

C) Preparation of bar and cartridge

3a. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used.

Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rod. After that, insert the rod in the empty hole to verify hole and depth lv. The anchor should be free of dirt, grease, oil and other foreign material.

Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components.

D) Filling the bore hole 4. Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times. Piston plugs and mixer nozzle extensions shall be used for the following applications: • Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth hef >• Overhead assembly (vertical upwards direction): Drill bit- \varnothing d₀ \ge 18 mm E) Setting the rebar 5a. Push the anchor rod into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The rod should be free of dirt, grease, oil or other foreign material. 5b. After inserting the anchor, the annular gap between the anchor rod and concrete, in case of a push through installation, in addition to the fixture, must be completely filled with mortar. Be sure that the anchor rod is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation, fix embedded part (e.g. with wedges). 5c. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured. 12 Std 5d. After full curing, the add-on part can be installed with up to the max. torque by using a calibrated torque wrench. In case of prepositioned installation, the annular gap between the anchor and fixture can be optionally filled with mortar. Therefore, substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar when

mortar oozes out of the washer.

Filling quantity

Anchor type: M8 - M30

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	30	35
Drill depth	h _o / h ₁	[mm]				=	h _{ef}			
Filling volume per 10mm embedment depth		[ml]	0.53	0.70	0.89	1.27	1.78	3.35	3.22	5.10

Assumed waste of 15 % included.

440 ml

585 ml

Ø8 - Ø32

Rebar not supplied by Würth

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridge	e sizes	Art. no.
440 ml	side-by-side	5918 615 440
585 ml	side-by-side	5918 615 585

Installation condition	ı	
Dry concrete	Wet concrete	Flooded drill hole
✓	✓	✓
Drilling method		
Hammer drill	Diamond drill	Hollow drill
√	1	1

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	EAD 330499-01-0601	ETA-20/1038, 02.04.2021
European Technical Assessment	DIBt, Berlin	EAD 330087-00-0601	ETA-20/1037, 04.03.2021

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Rebar material is according to specifications, steel grade B500B

- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characteristic resistance

Rebar size				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective and depth	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crack	ced concrete												
Tension	C20/25	N.	[L K I]	27.5	39.6	56.8	66.0	68.8	109.0	149.7	149.7	218.2	255.6
	C50/60	N _{Rk}	[kN]	27.5	43.5	62.2	72.6	82.9	141.0	209.0	199.6	287.4	364.9
Shear	≥ C20/25	V _{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	124.3	135.0	169.4	221.1
Cracked o	oncrete												
Tension	C20/25			12.1	19.8	29.0	35. <i>7</i>	40.8	64.1	95.0	99.0	130.6	165.9
	C50/60	N _{Rk} [kN]		13.3	21.8	31.9	39.3	44.9	70.5	104.5	108.9	143.7	182.5
Shear	≥ C20/25	V _{Rk} [kN]		13.8	21.7	31.1	42.4	55.3	86.4	124.3	135.0	169.4	221.1

Design resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective and	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crack	ced concrete	•											
Tension	C20/25	N _{Rd} [kN]		13.4	18.8	27.0	31.4	32.7	51.9	71.3	71.3	103.9	121.7
	C50/60	IN _{Rd}	[kN]	14.7	20.7	30.4	34.6	39.5	67.1	99.5	95.0	136.8	1 <i>7</i> 3.8
Shear	≥ C20/25	V _{Rd} [kN]		9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4
Cracked o	oncrete												
Tension	C20/25	N. UNI		5.7	9.4	13.8	17.0	19.4	30.5	45.2	47.1	62.2	79.0
	C50/60	N _{Rd}	[kN]	6.3	10.4	15.2	18. <i>7</i>	21.4	33.6	49.8	51.8	68.4	86.9
Shear	≥ C20/25	V _{Rd} [kN]		9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4

Recommended/allowable loads 1)

Rebar size				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective an	chorage	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-crac	ked concrete	e											
Tension	C20/25	l N	[L K I]	9.6	13.5	19.3	22.4	23.4	3 <i>7</i> .1	50.9	50.9	74.2	86.9
	C50/60	N _{rec}	[kN]	10.5	14.8	21.7	24.7	28.2	48.0	<i>7</i> 1.1	67.9	97.7	124.1
Shear	≥ C20/25	V	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	59.2	64.3	80. <i>7</i>	105.3
Cracked	oncrete												
Tension	C20/25	N	[L K I]	4.1	6.7	9.9	12.2	13.9	21.8	32.3	33.7	44.4	56.4
	C50/60	N _{rec}	[kN]	4.5	7.4	10.9	13.4	15.3	24.0	35.5	37.0	48.9	62.1
Shear	≥ C20/25	V _{rec} [kN]		6.5	10.3	14.8	20.2	26.3	41.1	59.2	64.3	80.7	105.3

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{1}}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Rebar material according to specifications, steel grade B500B

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{\rm Rds}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$

 $\textbf{3. Concrete cone failure} \qquad \qquad N_{Rd,c} \quad = \quad N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b;N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{hef} \cdot$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	210	270	300
Design steel resistance	N _{Rd,s}	[kN]	19.6	31.0	44.4	60.5	79.0	123.4	177.6	192.9	242.0	315.9

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance $N_{\rm Edp}^0$ in case of combined pull-out and concrete cone failure of a single anchor

	1	Rd,p										
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-cracked concrete												
Combined pull-out and concrete cone resistance	N O Rd,p	[kN]	13.4	18.8	27.6	31.4	35.9	61.0	90.5	86.4	124.4	158.0
Cracked concrete												
Combined pull-out concrete cone resistance	N O Rd,p	[kN]	5.7	9.4	13.8	17.0	19.4	30.5	45.2	47.1	62.2	79.0

•
$$s_{ccp} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$

•
$$c_{cr,p} = s_{cr,p}/2$$

Where $\tau_{_{\it Rk}}$ is the value $\tau_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{cr,p}$ and spacing $s_{cr,p}$ ($f_{sus} = 1$)

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	210	270	300
Spacing	S _{cr,p}	[mm]	219	270	328	354	375	506	607	605	678	775
Edge distance	C _{cr,p}	[mm]	109	135	164	1 <i>77</i>	188	253	303	303	339	387

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

 $^{^{\}mathrm{1}\mathrm{J}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, typ}}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,p, f sy,p	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,p, f sy,p	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,70	0,75	0,90	0,95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 N_{susd} = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a	sus	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f	ius	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80	0.70	0.60

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance N_{Rdc}° in case of concrete cone failure of a single anchor

Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300		
Non-cracked concrete														
Concrete cone resistance	N O Rd,c	[kN]	16.8	20.0	27.0	32.7	32.7	51.9	71.3	71.3	103.9	121.7		
Cracked concrete														
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	11.7	14.0	18.9	22.9	22.9	36.3	49.9	49.9	72.7	85.2		

Table 9: Characteristic edge distance $c_{cl,N}$ and spacing $s_{cl,N}$

Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h_{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Spacing	\$ _{cr,N}	[mm]	240	270	330	375	375	510	630	630	810	900
Edge distance	C _{cr,N}	[mm]	120	135	165	188	188	255	315	315	405	450

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef}$$
 and $c_{cr,N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef.min} \le h_{ef} \le h_{ef.max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	$f_{sx'} f_{sy}$	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 12: Influence of edge distance on concrete cone resistance

			•																
c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_$$

Table 13: Design resistance N_{ext} in case of concrete splitting failure of a single anchor

Rebar size	Rd,sp		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Non-cracked concret	е											
Splitting resistance	N O Rd,c	[kN]	13.4	18.8	27.0	31.4	32.7	51.9	71.3	71.3	103.9	121.7

Table 14: Characteristic edge distance c_{crsp} and spacing s_{crsp}

Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Characteristic spacing	S _{cr,sp}	[mm]	360	420	528	600	590	816	1004	1004	1296	1440
Characteristic edge distance	C _{cr,sp}	[mm]	180	210	264	300	295	408	502	502	648	720
Minimum member thickness	h _{min}	[mm]	110	120	142	161	165	218	274	274	340	380

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and h_{min} according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , f sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rdc} = k \cdot min \{N_{Rdp}, N_{Rdc}\}$

3. Concrete edge failure $V_{Rdc} = V_{Rdc}^0 \cdot f_{hV} \cdot f_{hefV} \cdot f_{sV} \cdot f_{c1V} \cdot f_{c2V} \cdot f_{a} \cdot f_{hefV}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{Rds} of a single anchor

Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Design steel resistance	$V_{Rd,s}$	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	82.9	90.0	112.9	147.4

2. Design concrete pry-out resistance

$$V_{Rd,c} = k_g \cdot min \{N_{Rd,c}; N_{Rd,c}\}$$

Table 20: factor k_g for calculating design pry-out resistance

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	210	270	300
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\mathit{Rd,c}} = \ V_{\mathit{Rd,c}}^{0} \cdot f_{\mathit{b,V}} \cdot f_{\mathit{hef,V}} \cdot f_{\mathit{s,V}} \cdot f_{\mathit{c1,V}} \ \cdot f_{\mathit{c2,V}} \cdot f_{\mathit{a}} \cdot f_{\mathit{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max (10 h_{ef}; 60 d)$. For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance $V_{Rd,c}^0$ in case of concrete edge failure

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	210	270	300
Non-cracked concrete	•											
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.8	3.6	4.6	5.6	5.8	8.3	12.2	12.2	14.3	1 <i>7</i> .2
Cracked concrete												
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.0	2.5	3.2	4.0	4.1	5.9	8.6	8.6	10.2	12.2

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

 $^{^{1\!\}mathrm{J}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef.V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

²⁾ strength at 28 days of 150 mm cubes

d. Influence of edge distance c,

Table 25: Influence of edge distance c, on concrete edge resistance

c ₁ /d	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

e. Influence of edge distance c₂

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c, on concrete edge resistance

C _{2/c1} 1)	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c_1 \le c_2$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

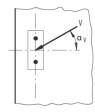


Table 27: Influence of load direction on concrete edge resistance

										90
f _{a.v}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

 $^{^{11}}$ For a \geq 90° the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

					•										
h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h.V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature for working life of 50 years

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +60°C	+35°C	+60°C
Temperature range III	- 40°C to +70°C	+43°C	+70°C

Working life of 50 years

1- Non-cracked concrete

Thread size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32			
Design bond resistance in non-cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), an drilled holes (CD)										DB), and	compres	sed air	
Temperature range l	Dry, wet			6.7	6.7	6.7	5.7	5.7	5.7	5.7	5.2	5.2	5.2
Temperature range II	concrete and $\tau_{\text{Rd,ucr}}$	$\tau_{_{Rd,ucr}}$	$\tau_{\text{Rd,ucr}} \ \ [\text{N/mm}^2]$	4.5	4.5	4.5	4.0	4.0	4.0	3.6	3.6	3.6	3.6
Temperature range III	bore holee			2.9	2.9	2.9	2.9	2.9	2.6	2.6	2.6	2.4	2.4

2- Cracked concrete

Thread size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32		
Design bond red drilled holes (C		ammer d	rilled hol	es (HD),	with holl	ow drill b	it (HDB),	and com	pressed	air			
Temperature range l	Dry, wet			2.9	3.3	3.3	3.1	3.1	2.9	2.9	2.9	2.6	2.6
Temperature range II	concrete and flooded	and $\tau_{_{Rd,ucr}}$	r _{Rd,ucr} [N/mm²]	1.9	2.1	2.1	2.1	1.9	1.9	1.9	1.9	1.7	1.7
Temperature range III	bore holee		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	

Reduction factors

Working life of 50 years

1- Non-cracked concrete

Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32	
Reduction fac holes (CD)	tors in non-cra	cked co	oncrete C20	/25 in h	ammer di	illed hole	es (HD), v	vith hollo	w drill bit	(HDB), c	ınd comp	ressed ai	r drilled
Temperature range I	Dry, wet			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II	concrete and $\tau_{\text{Rd,ucr}}$	[N/mm²]	0.68	0.68	0.68	0.71	0.71	0.71	0.63	0.68	0.68	0.68	
Temperature range III	bore hole			0.43	0.43	0.43	0.50	0.50	0.46	0.46	0.50	0.45	0.45

2- Cracked concrete

Rebar size					Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
Reduction factors in cracked concrete C20/25 in hammer drilled holes (HD), with hollow drill bit (HDB), and comholes (CD)									compress	ed air dri	lled		
Temperature range I	Dry, wet			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature range II		Rd,cr	Rd,cr [N/mm²]	0.67	0.64	0.64	0.69	0.62	0.67	0.67	0.67	0.64	0.64
Temperature range III	bore hole			0.42	0.36	0.36	0.38	0.38	0.42	0.42	0.42	0.45	0.45

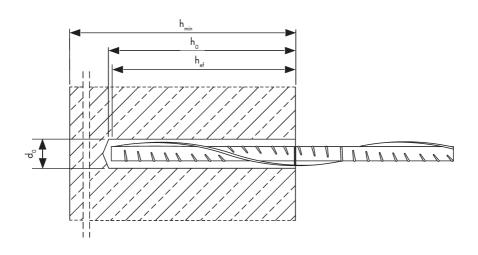
Mechanical characteristics

Steel grade	Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
	Stressed cross section	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
	Section modulus	W	[mm³]	50	98	1 <i>7</i> 0	269	402	<i>7</i> 85	13 <i>57</i>	1534	2155	3217
	Yield strength	f _y	[N/mm ²]	460	460	460	460	460	460	460	460	460	460
460A	Tensile strength	f	[N/mm ²]	483	483	483	483	483	483	483	483	483	483
	Design bending moment	M ^O _{Rd,s}	[Nm]	19	38	66	104	155	303	524	593	833	1243
	Yield strength	fy	[N/mm²]	460	460	460	460	460	460	460	460	460	460
460B	Tensile strength	fu	[N/mm²]	497	497	497	497	497	497	497	497	497	497
	Design bending moment	M ^O _{Rd,s}	[Nm]	20	39	68	107	160	312	540	610	857	1279
	Yield strength	f _y	[N/mm²]	500	500	500	500	500	500	500	500	500	500
B500B	Tensile strength	f	[N/mm²]	550	550	550	550	550	550	550	550	550	550
	Design bending moment	M ^o _{Rd,s}	[Nm]	22	43	75	118	177	345	597	675	948	1415

Material specifications

Product form		Bars and de-coiled rods							
Class		A	В	V					
Characteristic yield strer	gth f _{yk} or f _{0,2k} (MPa)		400 to 600						
Minimum value of k = (f	$(f_y)_k$	≥ 1,05	≥ 1,05 ≥ 1,08 ≥						
Characteristic strain at n	naximum force, ε _{uk} (%)	≥ 2,5 ≥ 5,0 ≥ 7,5							
Bendability		Bend/Rebend test							
Maximum deviation from nominal mass (individual bar or wire) (%)	Nominal bar size (mm) ≤ 8 > 8		+/- 6,0 +/- 4,5						

Working and curing times

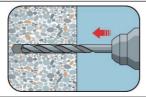

Temperature of base material	Gelling – working time	Min. curing time – dry conditions ¹⁾
5°C to 9°C	80 min	60 h
10°C to 14°C	60 min	48 h
15°C to 19°C	40 min	24 h
20°C to 24°C	30 min	12 h
25°C to 34°C	12 min	10 h
35°C to 39°C	8 min	7 h
+40°C	8 min	4 h

¹⁾ for wet base material the curing time must be doubled

Installation parameters

Rebar size			Ø	8 ¹⁾	Ø 1	O ¹⁾	Ø 1	2 ¹)	Ø 14	Ø 16	Ø 20	Ø 2	241)	Ø 2	25 ¹⁾	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	3	10	0	1:	2	14	16	20	2	4	2	5	28	32
Nominal drill hole diameter	d _o	[mm]	10	12	12	14	14	16	18	20	25	30	32	30	32	35	40
Effective anchorage	h _{ef,min}	[mm]	6	0	60	0	7	0	75	80	90	9	6	10	00	112	128
depth	h _{ef,max}	[mm]	16	50	20	0	24	10	280	320	400	48	30	50	00	560	640
Minimum thickness of	h _{min}	[mm]			30 m						h _e	_f + 2	d _o				
Minimum spacing	S _{min}	[mm]	4	0	50	0	6	0	70	75	85	12	20	12	20	130	150
Minimum edge distance	C _{min}	[mm]	3	5	40	0	4.	5	50	50	60	7	0	7	0	75	85

¹⁾ both nominal drill hole diameter can be used

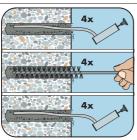


WIT-PE 510 WITH REBAR

Installation instructions

A) Bore hole drilling

1a. Hammer (HD) or compressed air drilling (CD)


Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. Proceed with Step B1.

1b. Hollow drill bit system (HDB)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. This drilling system removes the dust and cleans the bore hole during drilling. Proceed with Step C.

B) Bore hole cleaning

MAC: Cleaning for dry and wet bore holes with diameter d0 \leq 20 mm and bore hole depth h \leq 10 d_{nom} (non-cracked concrete only!)

Starting from the bottom or back of the bore hole, blow the hole clean with a hand pump a minimum of <u>four</u> times until return air stream is free of noticeable dust.

2b. Check brush diameter. Brush the hole with an appropriate sized wire brush > db_min a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension shall be used.

2c. Finally blow the hole clean again with a hand pump a minimum of <u>four</u> times until return air stream is free of noticeable dust.

CAC: Cleaning for dry, wet and water-filled bore holes for all diameters in non-cracked and cracked concrete

- Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
- **2c.** Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

C) Preparation of bar and cartridge 3a. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used. 3b. Prior to inserting the reinforcing bar into the filled bore hole, the position of the embedment depth shall be marked (e.g. with tape) on the reinforcing bar. After that, insert the bar in the empty hole to verify hole and depth lv. The anchor should be free of dirt, grease, oil and other foreign material. 3c. Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components. D) Filling the bore hole 4. Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/working times. Piston plugs and mixer nozzle extensions shall be used for the following applications: • Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth hef >• Overhead assembly (vertical upwards direction): Drill bit- \varnothing d₀ \ge 18 mm

WIT-PE 510 WITH REBAR

E) Setting the rebar		
	5a.	Push the reinforcing bar into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material.
	5b.	Be sure that the bar is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For horizontal and overhead installation, fix embedded part (e.g. with wedges).
12 Std.	5c.	Observe gelling time $t_{\rm gel}$. Attend that the gelling time can vary according to the base material temperature. Do not move or load the bar until full curing time $t_{\rm cure}$ has elapsed.

Filling quantity

Anchor type: M8 - M30

Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	25	32	32	35	40
Drill depth	h _o / h ₁	[mm]		=								
Filling volume per 10mm embedment depth		[ml]	0.81	1.01	1.21	1.43	1.66	2.59	4.85	4.47	5.07	6.62

Assumed waste of 15 % included.

Galvanized (5 microns): M8 - M30

Stainless steel - A4 (AISI 316): M8 - M30

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, natural stone with dense structure

Cartridge size	es	Art. no.
300 ml	foil-in-tube	0903 450 201
420 ml	coaxial	0903 450 205
825 ml	side-by-side	0903 450 206
WIT-Nordic = W	/IT-VM 250 for up to	o -20°C*:
330 ml	coaxial	0903 450 102

^{*} For more information, please visit our Würth Online Shop

Type of installation		
Pre-positioned	In-place	Stand-off
	-	✓
Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
√	✓	✓
Drilling method		
Hammer drill	Diamond drill	Hollow drill
✓	-	✓

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	ETAG 001-T5	ETA-12/0164, 12.11.2015
ICC-ES Evaluation Report	ICC	AC 308	ESR-4457, 01.09.2019
Fire resistance (concrete)	TU Kaiserslautern	TR 020	EBB 170019_6, 12.02.2018
LEED	eurofins		30.10.12
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 1104875A	13.03.13
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- · Anchor material according is to specifications,

- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characterstic resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete											
Tension	C20/25	N.		18.3	29.0	42.2	68.8	109.0	1 <i>4</i> 9. <i>7</i>	182.9	218.2
	C50/60	N _{Rk}	[kN]	18.3	29.0	42.2	78.5	122.5	1 <i>7</i> 6.5	223.9	251.9
Shear	≥ C20/25	V _{Rk}		11.0	17.4	25.3	47.1	73.5	105.9	137.7	168.3
Cracked concrete											
Tension	C20/25			8.0	14.1	22.8	34.6	58. <i>7</i>	8 <i>7</i> .1	128.0	152.8
	C50/60	N _{Rk}	[kN]	8.8	15.6	25.1	38.0	64.6	95.8	145.6	181.9
Shear	≥ C20/25	V _{Rk}		11.0	17.4	25.3	47.1	73.5	105.9	137.7	168.3

Design resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete											
Tension	C20/25	N		12.2	18.8	27.6	38.2	60.6	83.2	101.6	121.2
	C50/60	N _{Rd}	[kN]	12.2	19.3	28.1	46.1	78.3	106.4	124.4	140.0
Shear	≥ C20/25	V _{Rd}		8.8	13.9	20.2	3 <i>7.7</i>	58.8	84.7	110.2	134.6
Cracked concrete											
Tension	C20/25	N		5.4	7.9	12.7	19.2	32.6	48.4	<i>7</i> 1.1	84.9
	C50/60	N _{Rd}	[kN]	5.9	8.6	13.9	21.1	35.9	53.2	80.9	101.1
Shear	≥ C20/25	V _{Rd}		8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6

Recommended/allowable loads 1)

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h_{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete											
Tension	C20/25	N.		8.7	13.5	19.7	27.3	43.3	59.4	72.6	86.6
	C50/60	N _{rec}	[kN]	8. <i>7</i>	13.8	20.1	32.9	56.0	76.0	88.9	100.0
Shear	≥ C20/25	V _{rec}		6.3	9.9	14.5	26.9	42.0	60.5	78.7	96.2
Cracked concrete											
Tension	C20/25	N.		3,8	5,6	9,1	13 <i>,7</i>	23,3	34,6	50,8	60,6
	C50/60	N _{rec}	[kN]	4,2	6,2	10,0	15,1	25,6	38,0	57,8	72,2
Shear	≥ C20/25	V		6,3	9,9	14,5	26,9	42,0	60,5	78,7	96,2

 $^{^{1)}}$ Material safety factor $\gamma_{_{\rm M}}$ and safety factor for action $\gamma_{_{\rm L}}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Anchor material according to specifications, steel grade 5.8 unless otherwise stated in the tables

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{\rm Rds}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b:N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{sy,$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		$h_{\rm ef}$	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Design steel resistance	5.8	N _{Rd,s}	[kN]	12.2	19.3	28.1	52.3	81. <i>7</i>	117.7	153.0	187.0
	8.8	N _{Rd,s}	[kN]	19.3	30.7	44.7	83.3	130.7	188.0	245.3	299.3
	A4	N _{Rd,s}	[kN]	13.9	21.9	31.6	58.8	91.4	132.1	80.4	98.3

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance N_{old}^0 in case of combined pull-out and concrete cone failure of a single anchor

Kd,p											
Thread size			M8	M10	M12	M16	M20	M24	M27	M30	
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270	
Non-cracked concrete											
Combined pull-out and concrete cone resistance	N ⁰ _{Rd,p}	[kN]	13.4	18.8	27.6	41.9	71.2	96.8	113.1	127.2	
Cracked concrete	Cracked concrete										
Combined pull-out and concrete cone resistance	N ^o _{Rd,p}	[kN]	5.4	7.9	12.7	19.2	32.6	48.4	73.5	91.9	

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$

$$\cdot c_{cr,p} = s_{cr,p}/2$$

Where $\tau_{_{\it Rk}}$ is the value $\tau_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance c_{crp} and spacing s_{crp} ($f_{sus} = 1$)

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,Np}	[mm]	185	253	303	375	506	581	623	657
Edge distance	C _{cr,Np}	[mm]	92	126	152	188	253	291	312	329

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

 $^{^{1\!\}mathrm{J}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, \, typ}}$$

Consider the approved range of embedment $h_{_{ef,min}} \le h_{_{ef}} \le h_{_{ef,max}}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f sx,p, f sy,p	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,p, f sy,p	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,p, sy,p	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,p}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2,p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 $N_{sus.d}$ = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80	0.70	0.60

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to w_L ≤ 0.3 mm

Table 8: Basic design resistance N_{Rdc}^{0} in case of concrete cone failure of a single anchor

- Ruje										
Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	23.5	23.3	31.5	38.2	60.6	83.2	101.6	121.2
Cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	16.3	22.1	26.7	42.4	58.2	71.1	84.9

Table 9: Characteristic edge distance c_{crN} and spacing s_{crN}

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Spacing	S _{cr,N}	[mm]	240	270	330	375	510	630	720	810
Edge distance	C _{cr,N}	[mm]	120	135	165	188	255	315	360	405

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef}$$
 and $c_{cr,N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx'} f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

4. Design Splitting Resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot$$

Table 13: Design resistance N_{ext} in case of concrete splitting failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Non-cracked concrete										
Concrete cone resistance	N ⁰ _{Rd,sp}	[kN]	13.4	18.8	27.6	38.2	60.6	83.2	101.6	121.2

Table 14: Characteristic edge distance c and spacing s

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Spacing	S _{cr,sp}	[mm]	360	420	528	600	816	1008	1152	1296
Edge distance	C _{cr,sp}	[mm]	180	210	264	300	408	504	576	648
Minimum member thickness	h _{min}	[mm]	110	120	140	161	218	266	304	340

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and h_{min} according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,c}, N_{Rd,c}\}$

3. Concrete edge failure $V_{Rdc} = V_{Rdc}^0 \cdot f_{hV} \cdot f_{hefV} \cdot f_{sV} \cdot f_{c1V} \cdot f_{c2V} \cdot f_{a} \cdot f_{hefV}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{p,1}, of a single anchor

			(d,s								
Thread size				M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	240	270
	5.8		[kN]	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Design steel resistance	8.8	V _{Rd,s}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	179.2
	A4		[kN]	8.3	12.8	19.2	35.3	55.1	<i>7</i> 9.5	48.3	58.8

2. Design concrete pry-out resistance

$$V_{Rd,c} = k_{g} \cdot min \{N_{Rd,p}; N_{Rd,c}\}$$

Table 20: factor $k_{\scriptscriptstyle g}$ for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design Concrete Edge Resistance

$$V_{\mathit{Rd,c}} = \ V^{\mathit{0}}_{\mathit{Rd,c}} \cdot f_{\mathit{b,V}} \cdot f_{\mathit{hef,V}} \cdot f_{\mathit{s,V}} \cdot f_{\mathit{c1,V}} \cdot f_{\mathit{c2,V}} \cdot f_{\mathit{a}} \cdot f_{\mathit{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance $V_{Rd,c}^{0}$ in case of concrete edge failure

Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
Non-cracked concrete										
Basic design edge resistance	V O Rd,c	[kN]	3.3	4.8	6.5	10.3	15.3	21.1	25.9	31.1
Cracked concrete										
Basic design edge resistance	V O Rd,c	[kN]	2.4	3.4	4.6	<i>7</i> .3	10.9	14.9	18.4	22.0

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef,V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.8 <i>7</i>	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

²⁾ strength at 28 days of 150 mm cubes

d. Influence of edge distance c,

Table 20: Influence of edge distance on concrete edge resistance

C _{1/d}	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1.V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

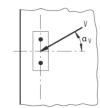
e. Influence of edge distance c

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c2 on concrete edge resistance

C _{2/c1} 1)	1	1.1	1.2	1.3	1.4	1.5
f _{c.V}	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c1 \le c2$


f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

 V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +80°C	+50°C	+80°C
Temperature range III	- 40°C to +120°C	+72°C	+120°C

Working life of 50 years

1- Non-cracked concrete

Thread size						M16	M20	M24	M27	M30	
Design bond resistance in non-cracked concrete C20/25, Dry and wet concrete											
Temperature range I			6.7	6.7	6.7	6.7	6.7	6.1	5.6	5.0	
Temperature range II	$\tau_{_{\text{Rd.ucr}}}$	[N/mm ²]	5.0	5.0	5.0	5.0	5.0	4.7	4.2	3.6	
Temperature range III			3.7	3.6	3.6	3.6	3.6	3.6	3.1	2.8	
Design bond resistance in no	n-crack	ed concrete	C20/25,	Flooded bo	re hole						
Temperature range I			3.6	4.0	4.0	4.0	not admissible				
Temperature range II	$\tau_{_{Rd.ucr}}$	[N/mm ²]	2.6	3.1	3.1	3.1		not adr	nissible		
Temperature range III	emperature range III				2.4	2.4		not admissible			

2- Cracked concrete

Thread size	Thread size					M16	M20	M24	M27	M30	
Design bond resistance in non-cracked concrete C20/25, Dry and wet concrete											
Temperature range I			2.7	2.8	3.1	3.1	3.1	3.1	3.6	3.6	
Temperature range II	$\tau_{_{Rd,cr}}$	[N/mm²]	1.7	1.9	2.2	2.2	2.2	2.2	2.5	2.5	
Temperature range III]		1.3	1.4	1.7	1.7	1.7	1.7	1.9	1.9	
Design bond resistance in no	n-crack	ed concrete	C20/25,	Flooded bo	ore hole						
Temperature range I			1.9	1.9	2.6	2.6	not admissible				
Temperature range II	$\tau_{_{Rd,cr}}$	[N/mm ²]	1.2	1.4	1.9	1.9		not admissible			
Temperature range III			1.0	1.2	1.4	1.4		not adn	nissible		

Reduction factors

Working life of 50 years

1- Non-cracked concrete

Thread size	Thread size					M16	M20	M24	M27	M30	
Reduction factor for non-cracked concrete C20/25, Dry and wet concrete											
Temperature range I			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	$\tau_{_{Rd.ucr}}$	[N/mm ²]	0.75	0.75	0.75	0.75	0.75	0.77	0.75	0.72	
Temperature range III			0.55	0.54	0.54	0.54	0.54	0.59	0.55	0.77	
Reduction factor for non-crac	ked cor	crete C20/	25, Flood	led bore hol	е						
Temperature range I			1.00	1.00	1.00	1.00	not admissible				
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	0.73	0.76	0.76	0.76		not admissible			
Temperature range III] -,		0.53	0.59	0.59	0.59		not admissible			

2- Cracked concrete

Thread size	Thread size					M16	M20	M24	M27	M30	
Reduction factor for non-cracked concrete C20/25, Dry and wet concrete											
Temperature range I			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temperature range II	$\tau_{_{ m Rd.cr}}$	$[N/mm^2]$	0.63	0.70	0.73	0.73	0.73	0.73	0.69	0.69	
Temperature range III	,		0.50	0.50	0.55	0.55	0.55	0.55	0.54	0.78	
Reduction factor for non-crac	ked cor	crete C20/	25, Flood	led bore hol	е						
Temperature range I			1.00	1.00	1.00	1.00	not admissible				
Temperature range II	$\tau_{_{Rd,cr}}$	$[N/mm^2]$	0.63	0.75	0.73	0.73		not adn			
Temperature range III			0.50	0.63	0.55	0.55		not admissible			

Mechanical characteristics

Steel grade	Thread size			M8	M10	M12	M16	M20	M24	M27	M30
Effective of	anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210	240	270
	Stressed cross section	A	[mm ²]	37	58	84	157	245	352	459	561
	Section modulus	W	[mm ³]	31	62	109	277	541	935	1387	1874
	Yield strength	f	[N/mm ²]	240	240	240	240	240	240	240	240
4.6	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M _{Rd,s}	[Nm]	9.0	18.0	31.1	79.6	155.7	268.9	398.8	538.9
	Yield strength	f _y	[N/mm ²]	320	320	320	320	320	320	320	320
4.8	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M _{Rd,s}	[Nm]	12.0	24.0	41.6	106.4	208.0	359.2	532.8	720.0
	Yield strength	f _y	[N/mm ²]	300	300	300	300	300	300	300	300
5.6	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
3.0	Design bending moment	M _{Rd,s}	[Nm]	11.4	22.2	38.9	99.4	194.0	335.3	498.8	672.5
	Yield Strength	f _y	[N/mm ²]	400	400	400	400	400	400	400	400
5.8	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
0.0	Design bending moment	M ^o _{Rd,s}	[Nm]	15.2	29.6	52	132.8	259.2	448	666.4	898.4
	Yield strength	f	[N/mm ²]	640	640	640	640	640	640	640	640
	Tensile strength	f	[N/mm ²]	800	800	800	800	800	800	800	800
8.8	Design bending moment	M ^o _{Rd,s}	[Nm]	24.0	48.0	84.0	212.8	415.2	716.8	1066.4	1437.6
	Yield strength	f	[N/mm ²]	210	210	210	210	210	210	210	210
Δ <i>1</i> -50	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
A4-50	Design bending moment	M _{Rd,s}	[Nm]	8.0	15.5	27.7	70.2	136.6	235.7	349.6	472.7
	Yield strength	f _y	[N/mm ²]	450	450	450	450	450	450	-	-
A4-70	Tensile strength	f	[N/mm ²]	700	700	700	700	700	700	-	-
A4-70	Design bending moment	M _{Rd,s}	[Nm]	16.7	33.3	59.0	148.7	291.0	502.6	-	-

Material specifications

Part	Designation		Material							
Steel,	zinc plated (Steel	acc. to	EN 10087:1998 or E	N 102	263:2001)					
- zinc p	lated ≥ 5	μm	acc. to EN ISO 4042	:1999						
- hot-di	o galvanized ≥ 40	μm	acc. to EN ISO 1461	:2009	and EN ISO 10684:20	004+AC:2009				
- sherai	rdized ≥ 45	Σμm	acc. to EN ISO 1766	8:201	6		_			
			Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture			
				4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 8%			
1	Anchor rod		acc. to EN ISO 898-	4.8	f _{uk} = 400 N/mm ²	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 8%			
			1:2013	5.6	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 8%			
				5.8	f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A5 > 8%			
				8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{vk} = 640 \text{ N/mm}^2$	A5 > 12% 3)			
				4	for anchor rod class 4	.6 or 4.8				
2	Hexagon nut		acc. to EN ISO 898- 2:2012	5						
				8	for anchor rod class 8	3.8				
3a	Washer				galvanized or sherardize EN ISO 7089:2000, EN	ed N ISO 7093:2000, or I	EN ISO 7094:2000)			
3b	Filling washer		Steel, zinc plated, h	ot-dip g	galvanized or sherardize	ed				
			Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture			
4	Internal threaded a	ınchor	acc. to	5.8	f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A5 > 8%			
	rod	EN ISO 898- 1:2013	8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A5 > 8%				

9 0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1										
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
1	Anchor rod 13 43	acc. to EN ISO 3506-	50	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 12% ³⁾					
		1:2009	70	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A5 > 12% 3)					
			80	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 12% 3)					
		acc. to	50	for anchor rod class 50							
2	Hexagon nut 1) 4)	EN ISO 3506- 1:2009	70	for anchor rod class 7	0						
		1.2007	80	for anchor rod class 8	0						
3a	Washer	1:2014) Stainless steel A4 (N 10088-1:2014) HCR: Material 1.45	Nateria 29 or	1.4401 / 1.4404 / 1 1.4565, acc. to EN 100	.4307 / 1.4567 or 1.4 .4571 / 1.4362 or 1.4 088-1:2014 N ISO 7093:2000, or E	578, acc. to EN					
3b	Filling washer	Stainless steel A4, H	igh co	rrosion resistance steel							
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
4	Internal threaded anchor	acc. to	50	f _{uk} = 500 N/mm ²	$f_{yk} = 210 \text{ N/mm}^2$	A5 > 8%					
	rod ^{1) 2)}	EN ISO 3506- 1:2009	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A5 > 8%					

Property class 70 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16

²⁾ for IG-M20 only property class 50

 $^{^{3)}}$ A5 > 8% fracture elongation if no requirement for performance category C2 exists

⁴⁾ Property class 80 only for stainless steel A4

Chemical resistance

Chemical agent	Concentration	Resistant	Not Resistant
Accumulator acid		•	
Acetic acid	40		•
Acetic acid	10	•	
Acetone	10		•
Ammonia, aqueous solution	5	•	
Aniline	100		•
Beer	100	•	
Benzene (kp 100-140°F)	100	•	
Benzol	100		•
Boric Acid, aqueous solution	100	•	
Calcium carbonate, suspended in water	all	•	
Calcium chloride, suspended in water	dii	•	
Calcium hydroxide, suspended in water		•	
Carbon tetrachloride	100	•	
	100	•	
Caustic soda solution			
Citric acid	all	•	
Diesel oil	100	•	
Ethyl alcohol, aqueous solution	50		•
Formic acid	100		•
Formaldehyde, aqueous solution	30	•	
Freon		•	
Fuel Oil		•	
Gasoline (premium grade)	100	•	
Glycol (Ethylene glycol)		•	
Hydraulic fluid	conc.	•	
Hydrochloric acid (Muriatic Acid)	conc.		•
Hydrogen peroxide	30		•
Isopropyl alcohol	100		•
Lactic acid	all	•	
Linseed oil	100	•	
Lubricating oil	100	•	
Magnesium chloride, aqueous solution	all	•	
Methanol	100		•
Motor oil (SAE 20 W-50)	100	•	
Nitric acid	10		•
Oleic acid	100	•	
Perchloroethylene	100	•	
Petroleum	100	•	
Phenol, aqueous solution	8		•
Phosphoric acid	85	•	
Potash lye (Potassium hydroxide)	10	•	
Potassium carbonate, aqueous solution	all	•	
Potassium chlorite, aqueous solution	all	•	
Potassium nitrate, aqueous solution	all	•	
Sodium carbonate	all	•	
Sodium Chloride, aqueous solution	all	•	
<u> </u>	all	•	
Sodium phosphate, aqueous solution	1		+
Sodium silicate	all	•	
Standard Benzine	100		
Sulfuric acid	10	•	_
Sulfuric acid	70	_	•
Tartaric acid	all	•	-
Tetrachloroethylene	100	•	
Toluene			•
Trichloroethylene	100		•
Turpentine	100	•	

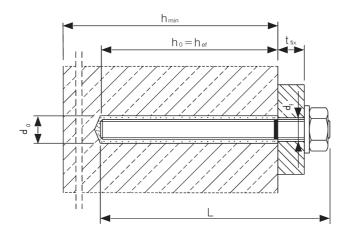
Properties of adhesive

Property		Testing method	Results
Stability			
UV-resistance (sunlight)			not resistant
Temperature resistance			120°C
Water resistance			resistant
Cleaning agents			1% tenside solution: no effect
Physical properties			
Flexural properties	Flexural strength	DIN EN 196-1	after 24 hours: 14.7 N/mm²
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours: ≥ 100 N/mm²
Dynamic modulus of elasticity		DIN EN 12504-4	after 24 hours: 14.09 GPa
Thermal conductivity	Modified transient plane source method		0.66 / 0.63 W/mK
Specific contact resistance		IEC 93	3.6 x 109 Ωcm
Density		DIN 53479	1.77 ± 0.1 g/cm ³
Workability features			
Water tightness / Impermeability		DIN EN 12390-8	after 72 hours at 5 bar: 0 mm
Open time (10-20°C)			15 min
Curing time (10-20°C)			80 min
Shelf-life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

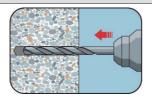
Working and curing times

Temperature of base material	Gelling - working time	Min. curing time – dry conditions ¹⁾
-10°C to -6°C	90 min ²⁾	24 h
-5°C to -1°C	90 min	14 h
0°C to 4°C	45 min	7 h
5°C to 9°C	25 min	2 h
10°C to 19°C	15 min	80 min
20°C to 29°C	6 min	45 min
30°C to 34°C	4 min	25 min
35°C to 39°C	2 min	20 min
> 40°C	90 s	15 min


¹⁾ for wet base material the curing time must be doubled

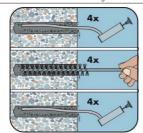
 $^{^{2)}}$ Cartridge temperature must be at min. $+15\,^{\circ}$ C

Installation parameters


Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	22	28	32	35
Eff	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Litective anchorage acpin	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance in hole	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b ≤	[mm]	12	14	16	20	26	30	34	3 <i>7</i>
Maximum torque moment	T _{inst} ≤	[Nm]	10	20	40	80	120	160	180	200
Thickness of fixture	† _{fix,min} >	[mm]				C)			
Thickness of fixture	† _{fix,max} <	[mm]				15	00			
Minimum thickness of member	h _{min}	[mm]	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_{o}$							
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150

Installation instructions

A) Bore hole drilling

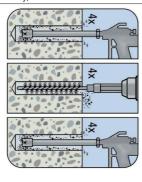

1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. In case of aborted drill hole, the drill hole shall be filled with mortar. (Manual Air Cleaning MAC <u>or</u> Compressed Air Cleaning CAC is allowed).

B) Bore hole cleaning

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ d_{see} (non-cracked concrete only!)

2b.


2a. Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump¹⁾ a minimum of <u>four</u> times

Check brush diameter and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of <u>four</u> times

If the bore hole ground is not reached with the brush, a brush extension shall be used.

Finally blow the hole clean again with a hand pump 1)
a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.

CAC: Cleaning for dry, wet and water-filled bore holes with all diameters (non-cracked and cracked concrete)

Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

2b. Check brush diameter. Brush the hole with an appropriate sized wire brush > db_{,min} a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.

Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

After cleaning, the bore hole has to be protected against rec-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

2c.

1) It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 240 mm also in cracked concrete with a hand-pump.

C) Preparation of anchor rod and cartridge		
	3a.	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used.
l → I	3b.	Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked.
	Зс.	Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey colour (minimum of three full strokes) and discard non-uniformly mixed adhesive components. In case of foil tubes, the cartridge must be stroked a minimum of six times.
D) Filling the bore hole		
	4.	Starting from the bottom or back of the cleaned bore hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm, an extension nozzle shall be used. For overhead and horizontal installation, a piston plug and extension nozzle shall be used. Observe the gel-/ working times.
WORTH		

E) Setting the anchor rod		
← ₩	5a.	Push the threaded rod into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material.
	5b.	After inserting the anchor, the annular gap between the anchor rod and concrete, in case of a push through installation, additionally also the fixture, must be completely filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application, the anchor rod shall be fixed (e.g. wedges).
+20°C	5c.	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured.
	5d.	After fully curing, the add-on part can be installed with up to the max. torque by using a calibrated torque wrench. In case of prepositioned installation, the annular gap between anchor and fixture can be optionally filled with mortar. Therefore, substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar when mortar oozes out of the washer.

Filling Quantity

Anchor type: M8 - M30

Thread size			M8	M10	M12	M16	M20	M24	M27	M30	
Nominal drill hole	d _o	[mm]	10	12	14	18	22	28	32	35	
diameter											
Drill depth	h_o/h_1	[mm]	= h _{ef}								
Filling volume per 10mm embedment depth		[ml]	0.53	0.70	0.89	1.27	1.78	3.35	4.34	5.10	

Assumed waste of 15 % included.

WIT-VM 250 WITH REBAR

Ø8 - Ø32

Rebar not supplied by Würth

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, natural stone with dense structure

Cartridge size	s	Art. no.				
300 ml	foil-in-tube	0903 450 201				
420 ml	coaxial	0903 450 205				
825 ml	side-by-side	0903 450 206				
WIT-Nordic = for	r up to -20°C*:					
330 ml	coaxial	0903 450 102				

^{*} For more information, please visit our Würth Online Shop

Type of installation		
Pre-positioned	In-place	Stand-off
✓	-	-
Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
✓	✓	✓
Drilling method		
Hammer drill	Diamond drill	Hollow drill
	_	/

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	ETAG 001-T5	ETA-12/0164, 12.11.2015
European Technical Assessment	DIBt, Berlin	EAD 330087-00-0601	ETA-12/0166, 27.02.2018
ICC-ES Evaluation Report	ICC	AC 308	ESR-4457, 01.09.2019
Fire resistance (concrete)	TU Kaiserslautern	TR 020	EBB 170019_6, 12.02.2018
LEED	eurofins		30.10.12
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 1104875A	13.03.13
NSF International	NSF International	NSF/ANSI Standard61	02.01.20

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- Rebar material is according to specifications, steel grade B500B

- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characterstic resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth ${\sf h}_{\sf ef}$ [m				80	90	110	125	125	170	210	270	300
Non-cracked concrete												
Tension	C20/25	NI	[LV]	20.1	33.9	49.8	66.0	68.8	109.0	149.7	218.2	255.6
	C50/60	N _{Rk}	[kN]	22.1	37.3	54.7	72.6	82.9	141.0	199.6	261.3	282.0
Shear	≥ C20/25	V _{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	135.0	169.4	221.1
Cracked concrete	•											
Tension	C20/25	NI	[LVI]	8.0	14.1	22.8	30.2	34.6	58.7	90.7	152.8	1 <i>7</i> 8.9
	C50/60	N _{Rk}	[kN]	8.8	15.6	25.1	33.3	38.0	64.6	99.8	169.8	215.6
Shear	≥ C20/25	V_{Rk}	[kN]	13.8	21.7	31.1	42.4	55.3	86.4	135.0	169.4	221.1

Design resistance

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked concrete												
Tension	C20/25	N	[LVI]	13.4	18.8	27.6	36.7	38.2	60.6	83.2	121.2	142.0
	C50/60	N _{Rd}	[kN]	14.7	20.7	30.4	40.3	46.1	78.3	110.9	145.1	156.7
Shear	≥ C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	90.0	112.9	147.4
Cracked concrete	•											
Tension	C20/25	N	fl N i 1	5.4	7.9	12.7	16.8	19.2	32.6	50.4	84.9	99.4
	C50/60	N _{Rd} [k	[kN]	5.9	8.6	13.9	18.5	21.1	35.9	55.4	94.3	119.8
Shear	≥ C20/25	V _{Rd}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	90.0	112.9	147.4

WIT-VM 250 WITH REBAR

Recommended/allowable loads 1)

Rebar size				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth $h_{_{\mathrm{ef}}}$ [r		[mm]	80	90	110	125	125	170	210	270	300	
Non-cracked concrete												
Tension	C20/25	N.	[L K I]	9.6	13.5	19.7	26.2	27.3	43.3	59.4	86.6	101.4
	C50/60	N _{rec}	[kN]	10.5	14.8	21.7	28.8	32.9	56.0	79.2	103.7	111.9
Shear	≥ C20/25	V _{rec}	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	64.3	80.7	105.3
Cracked concrete	•											
Tension	C20/25	N.	[L K I]	3.8	5.6	9.1	12.0	13.7	23.3	36.0	60.6	71.0
	C50/60	N _{rec}	[kN]	4.2	6.2	10.0	13.2	15.1	25.6	39.6	67.4	85.6
Shear	≥ C20/25	V	[kN]	6.5	10.3	14.8	20.2	26.3	41.1	64.3	80.7	105.3

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{L}}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Rebar material according to specifications, steel grade B500B

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{\rm Rds}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sv,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cv,p} \cdot f_{sus}$

 $3. \ \, \text{Concrete cone failure} \qquad \qquad N_{\scriptscriptstyle Rd,c} \ = N^0_{\scriptscriptstyle Rd,c} \cdot f_{\scriptscriptstyle b,N} \cdot f_{\scriptscriptstyle hef} \cdot f_{\scriptscriptstyle sx} \cdot f_{\scriptscriptstyle sy} \cdot f_{\scriptscriptstyle cx,1} \cdot f_{\scriptscriptstyle cx,} \cdot f_{\scriptscriptstyle cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{hef} \cdot f_{sy,$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Rebar size			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Design steel resistance	N _{Rd,s}	[kN]	19.6	31.0	44.4	60.5	79.0	123.4	192.9	242.0	315.9

WIT-VM 250 WITH REBAR

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance N_{old}^0 in case of combined pull-out and concrete cone failure of a single anchor

Rd,p												
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300	
Non-cracked concrete												
Combined pull-out and concrete cone resistance	N ⁰ _{Rd.p}	[kN]	13.4	18.8	27.6	36.7	41.9	71.2	100.8	131.9	142.4	
Cracked concrete												
Combined pull-out and concrete cone resistance	N ^o _{Rd,p}	[kN]	5.4	7.9	12.7	16.8	19.2	32.6	50.4	85.8	108.9	

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$

$$c_{crp} = s_{crp}/2$$

Where $\tau_{_{\it Rk}}$ is the value $\tau_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{c,p}$ and spacing $s_{c,p}$ ($f_{sus}=1$)

		7/-									
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Spacing	S _{cr,p}	[mm]	185	253	303	354	375	506	605	646	681
Edge distance	C _{cr,p}	[mm]	92	126	152	177	188	253	303	323	341

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

 $^{^{1\!\}mathrm{J}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef, \, typ}}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "installation parameters".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,p, f sy,p	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,p, f sy,p	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,p,} f _{sy,p}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx,p,} f _{sy,p}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,70	0,75	0,90	0,95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.42	0.65	0.40	0.70	0.73	0.75	0.78	0.80	0.83	0.85	^ 00	0.85	0.88	0.95	0.98	1.00
f _{cy}	0.55	0.56	0.00	0.03	0.63	0.06	0.70	0.73	0.73	0.76	0.80	0.63	0.63	0.00	0.63	0.00	0.93	0.96	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 $N_{sus,d}$ = design value of sustained actions (permanent actions & permanent component of variable actions)

 $N_{\rm Ed}$ = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a _{sus}	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f _{sus}	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.80	0.70	0.60

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance N_{Rdc}° in case of concrete cone failure of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Non-cracked concrete											
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	23.5	23.3	31.5	38.2	38.2	60.6	83.2	121.2	142.0
Cracked concrete											
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	16.4	16.3	22.1	26.7	26.7	42.4	58.2	84.9	99.4

Table 9: Characteristic edge distance $c_{c,N}$ and spacing $s_{c,N}$

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Spacing	S _{cr,N}	[mm]	240	270	330	375	375	510	630	810	900
Edge distance	C _{cr,N}	[mm]	120	135	165	188	188	255	315	405	450

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,N} = 3 h_{ef}$$
 and $c_{cr,N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef, typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
f _{cv}																			

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_$$

Table 13: Design resistance N_{ext} in case of concrete splitting failure of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Non-cracked concrete											
Splitting resistance	N ⁰ _{Rd,sp}	[kN]	13.4	18.8	27.6	36.7	38.2	60.6	83.2	121.2	142.0

Table 14: Characteristic edge distance $c_{cr.sp}$ and spacing $s_{cr.sp}$

		C1,5p		C1,5P							
Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Characteristic spacing	S _{cr,sp}	[mm]	360	420	528	600	590	816	1004	1296	1440
Characteristic edge distance	C _{cr,sp}	[mm]	180	210	264	300	295	408	502	648	720
Minimum member thickness	h _{min}	[mm]	110	120	142	161	165	218	274	340	380

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and h_{min} according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx,sp} , f _{sy,sp}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

^{1]} Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx, 1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 18: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,p}, N_{Rd,c}\}$

3. Concrete edge failure $V_{Rdc} = V_{Rdc}^0 \cdot f_{hV} \cdot f_{hefV} \cdot f_{sV} \cdot f_{c1V} \cdot f_{c2V} \cdot f_{a} \cdot f_{hefV}$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{Rds} of a single anchor

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Design steel resistance	V _{Rd,s}	[kN]	9.2	14.5	20.7	28.2	36.9	57.6	90.0	112.9	147.4

2. Design concrete pry-out resistance

$$V_{\rm Rd,c} = k_{\rm g} \cdot \min \{N_{\rm Rd,p}; N_{\rm Rd,c}\}$$

Table 20: factor k_g for calculating design pry-out resistance

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	125	1 <i>7</i> 0	210	270	300
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{Rd,c} = V_{Rd,c}^0 \cdot f_{h,V} \cdot f_{hef,V} \cdot f_{s,V} \cdot f_{cl,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{hef,V}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max (10 h_{ef}; 60 d)$. For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance V_{Rdc}^0 in case of concrete edge failure

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Effective anchorage length	h _{ef}	[mm]	80	90	110	125	125	170	210	270	300
Non-cracked concrete											
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	3.3	4.8	6.5	8.5	10.3	15.3	22.4	28.3	35.2
Cracked concrete									,		
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	2.4	3.4	4.6	6.0	7.3	10.9	15.8	20.0	24.9

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef,V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacings in the row closest to the edge.

d. Influence of edge distance c,

Table 25: Influence of edge distance c1 on concrete edge resistance

c ₁ /d	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	1 <i>7</i> .54	34.66	59.52	87.35

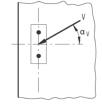
²⁾ strength at 28 days of 150 mm cubes

e. Influence of edge distance c,

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c, on concrete edge resistance

c _{2/c1} 1)	1	1.1	1.2	1.3	1.4	1.5
f	0.75	0.80	0.85	0.90	0.95	1.00


^{1]} Distance to the second edge: $c_1 \le c_2$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	- 40°C to +40°C	+24°C	+40°C
Temperature range II	- 40°C to +80°C	+50°C	+80°C
Temperature range III	- 40°C to +120°C	+72°C	+120°C

Working life of 50 years

1- Non-cracked concrete

Rebar size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32			
Design bond resistance in non-cracked concrete C20/25, Dry and wet concrete													
Temperature range I			6.7	6.7	6.7	6.7	6.7	6.7	6.1	5.6	4.7		
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	5.0	5.0	5.0	5.0	5.0	5.0	4.4	3.9	3.3		
Temperature range III			3.7	3.6	3.6	3.6	3.6	3.6	3.3	2.8	2.5		
Design bond resistance	in non-c	racked conc	rete C20/	25, Flood	ed bore ho	ole							
Temperature range I			3.6	4.0	4.0	4.0	4.0		not adr	missible			
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm²]	2.6	3.1	3.1	3.1	3.1	not admissible					
Temperature range III	Kd,0Cl		1.9	2.4	2.4	2.4	2.4	not admissible					

2- Cracked concrete

Rebar size	Rebar size					Ø14	Ø16	Ø20	Ø25	Ø28	Ø32		
Design bond resistance in non-cracked concrete C20/25, Dry and wet concrete													
Temperature range I			2.7	2.8	3.1	3.1	3.1	3.1	3.1	3.6	3.6		
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	1.7	1.9	2.2	2.2	2.2	2.2	2.2	2.5	2.5		
Temperature range III	,		1.3	1.4	1.7	1.7	1. <i>7</i>	1. <i>7</i>	1.7	1.9	1.9		
Design bond resistance i	in non-c	racked conc	rete C20/	25, Flood	ed bore ho	ole							
Temperature range I	Temperature range I					2.6	2.6		not adr	missible			
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	1.2	1.4	1.9	1.9	1.9	not admissible					
Temperature range III	, ka,uci		1.0	1.2	1.4	1.4	1.4	not admissible					

Reduction factors

Working life of 50 years

1- Non-cracked concrete

Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32		
Reduction factor for non-cracked concrete C20/25, Dry and wet concrete													
Temperature range I			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	0.75	0.75	0.75	0.75	0.75	0.75	0.73	0.70	0.71		
Temperature range III			0.55	0.54	0.54	0.54	0.54	0.54	0.55	0.50	0.53		
Reduction factor for non-	cracked	d concrete C	20/25, Fl	ooded bo	re hole								
Temperature range I			1.00	1.00	1.00	1.00	1.00		not adr	missible			
Temperature range II	τ _{Rd,ucr}	[N/mm ²]	0.73	0.76	0.76	0.76	0.76	not admissible					
Temperature range III	Na,ucr	kd,ucr - / -	0.53	0.59	0.59	0.59	0.59	not admissible					

2- Cracked concrete

Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32		
Reduction factor for non-cracked concrete C20/25, Dry and wet concrete													
Temperature range I			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	0.63	0.70	0.73	0.73	0.73	0.73	0.73	0.69	0.69		
Temperature range III	1,		0.50	0.50	0.55	0.55	0.55	0.55	0.55	0.54	0.54		
Reduction factor for non-	cracked	d concrete C	20/25, Fl	ooded boi	re hole								
Temperature range I			1.00	1.00	1.00	1.00	1.00		not adr	missible			
Temperature range II	$\tau_{_{Rd,ucr}}$	[N/mm ²]	0.63	0.75	0.73	0.73	0.73	not admissible		missible			
Temperature range III	KG,UCI		0.50	0.63	0.55	0.55	0.55	not admissible					

Mechanical characteristics

Steel grade	Rebar size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø24	Ø25	Ø28	Ø32
	Stressed cross section	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
	Section modulus	W	[mm³]	50	98	170	269	402	<i>7</i> 85	13 <i>57</i>	1534	2155	3217
	Yield strength	f _y	[N/mm ²]	460	460	460	460	460	460	460	460	460	460
460A	Tensile strength	f	[N/mm ²]	483	483	483	483	483	483	483	483	483	483
	Design bending moment	M ^O _{Rd,s}	[Nm]	19	38	66	104	155	303	524	593	833	1243
	Yield strength	fy	[N/mm²]	460	460	460	460	460	460	460	460	460	460
460B	Tensile strength	fu	[N/mm²]	497	497	497	497	497	497	497	497	497	497
	Design bending moment	M ^O _{Rd,s}	[Nm]	20	39	68	107	160	312	540	610	857	1279
	Yield strength	f _y	[N/mm²]	500	500	500	500	500	500	500	500	500	500
B500B	Tensile strength	f	[N/mm²]	550	550	550	550	550	550	550	550	550	550
	Design bending moment	M ⁰ _{Rd,s}	[Nm]	22	43	75	118	1 <i>77</i>	345	597	675	948	1415

Material specifications

Product form	1	Bars and de-coiled rods						
Class		Α	С					
Characteristic yi	eld strength f _{yk} or	400 to 600						
Minimum value	of $k = (f_i/f_y)_k$	≥ 1.05	≥ 1.05 ≥ 1.08 ≥ 1.1 < 1.3					
Characteristic st force, ε _{uk} (%)	rain at maximum	≥ 2.5 ≥ 5.0 ≥ 7.5						
Bendability			Bend/Rebend test					
Maximum deviation from nominal mass (individual bar or wire) (%) Nominal bar size (mm) ≤ 8 > 8			+/- 6.0 +/- 4.5					

Chemical resistance

Chemical Agent	Concentration	Resistant	Not Resistant
Accumulator acid		•	
Acetic acid	40		•
Acetic acid	10	•	
Acetone	10		•
Ammonia, aqueous solution	5	•	
Aniline	100		•
Beer		•	
Benzene (kp 100-140°F)	100	•	
Benzol	100		•
Boric Acid, aqueous solution	100	•	
Calcium carbonate, suspended in water	all	•	
Calcium chloride, suspended in water	dii	•	
Calcium hydroxide, suspended in water		•	
Carbon tetrachloride	100	•	
Caustic soda solution	100	•	
	all	•	
Citric acid	100	•	+
Diesel oil		•	
Ethyl alcohol, aqueous solution	50 100		•
Formic acid		•	•
Formaldehyde, aqueous solution	30		
Freon		•	
Fuel Oil	100	•	
Gasoline (premium grade)	100	•	
Glycol (Ethylene glycol)		•	
Hydraulic fluid	conc.	•	
Hydrochloric acid (Muriatic Acid)	conc.		•
Hydrogen peroxide	30		•
Isopropyl alcohol	100		•
Lactic acid	all	•	
Linseed oil	100	•	
Lubricating oil	100	•	
Magnesium chloride, aqueous solution	all	•	
Methanol	100		•
Motor oil (SAE 20 W-50)	100	•	
Nitric acid	10		•
Oleic acid	100	•	
Perchloroethylene	100	•	
Petroleum	100	•	
Phenol, aqueous solution	8		•
Phosphoric acid	85	•	
Potash lye (Potassium hydroxide)	10	•	
Potassium carbonate, aqueous solution	all	•	
Potassium chlorite, aqueous solution	all	•	
Potassium nitrate, aqueous solution	all	•	
Sodium carbonate	all	•	
Sodium Chloride, aqueous solution	all	•	
Sodium phosphate, aqueous solution	all	•	
Sodium silicate	all	•	
Standard Benzine	100	•	
Sulfuric acid	10	•	
Sulfuric acid	70		•
Tartaric acid	all	•	
Tetrachloroethylene	100	•	
Toluene	100		•
Trichloroethylene	100		•
			_
Turpentine	100		

Results shown in the table are applicable to brief periods of chemical contact with full cured adhesive (e.g. temporary contact with adhesive during a spill).

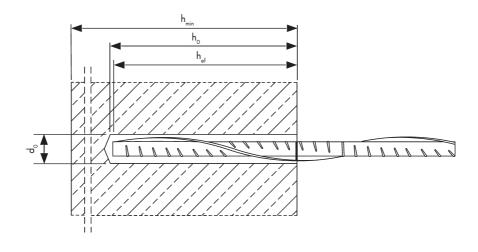
Properties of adhesive

Property		Testing method	Result / mean value
Stability			
UV-resistance (sunlight)			not resistant
Temperature resistance			120°C
Water resistance			resistant
Cleaning agents			1% tenside solution: no effect
Physical properties			
Flexural properties	Flexural strength	DIN EN 196-1	after 24 hours: 14.7 N/mm²
Compressive properties	Compressive strength	DIN EN 196-1	after 24 hours: ≥ 100 N/mm²
Dynamic modulus of elasticity		DIN EN 12504-4	after 24 hours: 14,09 GPa
Thermal conductivity	Modified transient plane source method		0,66 / 0,63 W/mK
Specific contact resistance		IEC 93	3,6 x 10° Ωcm
Density		DIN 53479	1,77 ± 0,1 g/cm ³
Workability features			
Water tightness / Impermeability		DIN EN 12390-8	after 72 hours at 5 bar: 0 mm
Open time (10-20°C)			15 min
Curing time (10-20°C)			80 min
Shelf-life			18 months

For information use only. Values are not to be considered as a specification and do not reflect the performance of the system. The given values are typical values and are subject to change without notice.

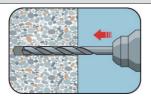
Working and curing times

Temperature of base material	Gelling - working time	Min. curing time – dry conditions ¹⁾
-10°C to -6°C	90 min ²⁾	24 h
-5°C to -1°C	90 min	14 h
0°C to 4°C	45 min	7 h
5°C to 9°C	25 min	2 h
10°C to 19°C	15 min	80 min
20°C to 29°C	6 min	45 min
30°C to 34°C	4 min	25 min
35°C to 39°C	2 min	20 min
> 40°C	90 s	1.5 min


¹⁾ for wet base material the curing time must be doubled

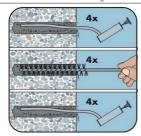
 $^{^{2)}}$ Cartridge temperature must be at min. +15 $^{\circ}\text{C}$

Installation parameters


Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	25	32	35	40
Effective anchorage	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b ≥	[mm]	14	16	18	20	22	26	34	37	41.5
Minimum thickness of member	h _{min}	[mm]		O mm ≥				h _{ef} + 2d ₀			
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

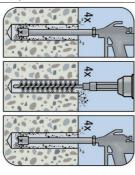
Installation instructions

A) Bore hole drilling



1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. In case of aborted drill hole, the drill hole shall be filled with mortar.


B) Bore hole cleaning

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ ds (non-cracked concrete only!)

- 2a. Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump a minimum of four times
- 2b. Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of four times in a twisting motion.
 If the bore hole ground is not reached with the brush, a
 - brush extension shall be used.
- **2c.** Finally blow the hole clean again with a hand pump a minimum of four times.

CAC: Cleaning for dry, wet and water-filled bore holes with all diameters (non-cracked and cracked concrete)

- 2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.
- **2b.** Check brush diameter. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
- **2c.** Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.

C) Preparation of anchor rod and cartridge 3a. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used. 3b. Prior to inserting the reinforcing bar into the filled bore hole, the position of the embedment depth shall be marked (e.g. with tape) on the reinforcing bar. After that, insert the bar in the empty hole to verify hole and depth lv. The anchor should be free of dirt, grease, oil and other foreign material. 3c. Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components. D) Filling the bore hole 4. Starting from the bottom or back of the cleaned bore hole, fill the hole with adhesive until the level mark at the mixer extension is visible at the top of the hole. For embedment larger than 190 mm, an extension nozzle shall be used. Slowly withdraw the static mixing nozzle. Using a piston plug during injection of the mortar helps to avoid creating air pockets. For overhead and horizontal installation and bore holes deeper than 240 mm, a piston plug and the appropriate mixer extension must be used. Observe the gel-/ working times.

E) Setting the rebar 5a. Push the reinforcing bar into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material. 5b. Be sure that the bar is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For horizontal and overhead installation, fix embedded part (e.g. with wedges). Observe gelling time t $_{\rm gel}$. Attend that the gelling time can vary according to the base material temperature. Do 5c. +20;C not move or load the bar until full curing time town has Allow the adhesive to cure to the specified time prior to applying any load. Do no move or load the bar until it is fully cured. After full curing time tcure has elapsed, the add-on part can be installed.

Filling Quantity

Anchor type: Ø 8 - Ø 32

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	25	32	32	35	40
Drill depth	h _o / h ₁	[mm]		=								
Filling volume per 10mm embed- ment depth		[ml]	0.81	1.01	1.21	1.43	1.66	2.59	4.85	4.47	5.07	6.62

Assumed waste of 15 % included.

Approved for:

Concrete C20/25 to C50/60, non-cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Cartridg	je sizes	Art. no.
300 ml	foil-in-tube	5918 242 300
330 ml	coaxial	5918 240 330
420 ml	coaxial	5918 240 420

Type of installation								
Pre-positioned	In-place	Stand-off						
√	-	√						

Installation condition		
Dry concrete	Wet concrete	Flooded drill hole
✓	1	1

Drilling method		
Hammer drill	Diamond drill	Hollow drill
√	-	-

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	TZUS, Prag	ETAG 001-T5	ETA-12/0569, 25.01.2016
European Technical Assessment	TZUS, Prag	ETAG 029	ETA-13/0037, 28.04.2016
LEED	eurofins		20.12.18
VOC Emissions Test report	eurofins	DEVL 1101903D, DEVL 1104875A	20.12.18

Basic load data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness and embedment depth are according to anchor characteristics
- · Anchor material according is to specifications,

- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max long term/short term base material temperature: +24°C/40°C).
- Dry or wet conditions of drill hole, hammer drilling

Characteristic resistance

Thread size				M8	M10	M12	M16	M20	M24	
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	
Non-cracked concrete										
Tension	C20/25	N	[kN]	1 <i>7</i> .1	22.6	33.2	50.3	85.5	126.7	
	C50/60	N _{Rk}		18.3	24.9	36.5	55.3	94.0	139.3	
Shear	≥ C20/25	V _{Rk}	[kN]	11.0	17.4	25.3	47.1	73.5	105.9	

Design resistance

Thread size				M8	M10	M12	M16	M20	M24		
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210		
Non-cracked concrete											
Tension	C20/25		[kN]	9.5	12.6	18.4	27.9	47.5	70.4		
	C50/60	N _{Rd}		10.4	13.8	20.3	30.7	52.2	77.4		
Shear	≥ C20/25	V _{Rd}	[kN]	8.8	13.9	20.2	37.7	58.8	84.7		

Recommended/allowable Loads 1)

Thread size				M8	M10	M12	M16	M20	M24	
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	170	210	
Non-cracked concrete										
Tension	C20/25		[kN]	6.8	9.0	13.2	19.9	33.9	50.3	
	C50/60	N _{rec}		7.5	9.9	14.5	21.9	37.3	55.3	
Shear	≥ C20/25	V	[kN]	6.3	9.9	14.5	26.9	42.0	60.5	

 $^{^{11}}$ Material safety factor γ_{M} and safety factor for action γ_{L} = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Temperature range 1 (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C).
- · Dry or wet conditions of drill hole, hammer drilling (Installation factors might apply for other drilling methods)
- Anchor material according to specifications, steel grade 5.8 unless otherwise stated in the tables

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure N_{pds}

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N} \cdot f_{bef} \cdot f_{sx,p} \cdot f_{cx,l,p} \cdot f_{cx,l,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sup} \cdot f_{sy,p} \cdot f_{cx,p} \cdot f_{cx,p} \cdot f_{cy,p} \cdot f_{sy,p} \cdot f_{cy,p} \cdot f_{cy,$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{h$

1. Design steel resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

					KU,S				
Thread size				M8	M10	M12	M16	M20	M24
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210
Design steel resistance	5.8	N _{Rd,s}	[kN]	12.2	19.3	28.1	52.3	81. <i>7</i>	117.7
	8.8	N _{Rd,s}	[kN]	19.3	30.7	44.7	83.3	130.7	188.0
	A4	N _{Rd,s}	[kN]	13.9	21.9	31.6	58.8	91.4	132.1

2. Design combined pull-out and concrete cone resistance

$$N_{Rd,p} = N_{Rd,p}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,p} \cdot f_{sy,p} \cdot f_{cx,1,p} \cdot f_{cx,2,p} \cdot f_{cy,p} \cdot f_{sus}$$

Table 2: Basic design resistance N_{Rdp}^0 in case of combined pull-out and concrete cone failure of a single anchor

Ku,p										
Thread size			M8	M10	M12	M16	M20	M24		
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210		
Non-cracked concrete										
Combined pull-outand concrete cone resistance	N ^o _{Rd,p}	[kN]	9.5	12.6	18.4	27.9	47.5	70.4		

•
$$s_{cr,p} = 7.3 d (f_{sus} \cdot \tau_{Rk})^{0.5} \le 3h_{ef}$$

$$c_{cr,p} = s_{cr,p}/2$$

Where $\tau_{_{\it Rk}}$ is the value $\tau_{_{\it Rk,ucr}}$ for non-cracked concrete C20/25

Table 3: Characteristic edge distance $c_{cr,p}$ and spacing $s_{cr,p}$ ($f_{sus} = 1$)

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Spacing	S _{cr,p}	[mm]	170	206	248	330	413	496
Edge distance	C _{cr,p}	[mm]	85	103	124	165	206	248

a. Influence of concrete strength

Table 4: Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.02	1.04	1.07	1.08	1.09	1.10

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

$$f_{hef} = \frac{h_{ef}}{h_{ef,\,typ}}$$

Consider the approved range of embedment $h_{efmin} \le h_{ef} \le h_{efmax}$ according to the table "installation parameters".

²⁾ strength at 28 days of 150 mm cubes

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 5: Influence of spacing on combined pull-out and concrete cone resistance

Number of																				
fixing per	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
	, cr,b																			
direction																				
2	СС	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
	Sx,p, sy,p	0.55	0.56	0.00	0.03	0.03	0.08	0.70	0.73	0.75	0.76	0.80	0.65	0.65	0.66	0.65	0.00	0.73	0.76	1.00
3	t t	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
	sx,p, sy,p	010	0.70	0.47	0.00	0.00	0.07	0.00	0.00	0.07	0., 0	0.7 0	0.,,	0.00	0.00	0.00	0.00	0.70	0.77	
4	t t	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
	sx,p, sy,p																			
5	СС	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00
5	Sx,p, sy,p	0.26	0.52	0.50	0.40	0.44	0.46	0.52	0.50	0.00	0.04	0.08	0.72	0.70	0.80	0.70	0.80	0.72	0.70	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1,p} = 0.7 + 0.3 \frac{c_x}{c_{cr,p}} \le 1$$
 $f_{cx,2,p} = f_{cy,p} = \left(1 + \frac{c_{x(y)}}{c_{cr,p}}\right) \cdot \frac{1}{2} \le 1$

Table 6: Influence of edge distance on combined pull-out and concrete cone resistance

c/c _{cr,P}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,p}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2,p}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

e. Influence of sustained loads

$$a_{sus} = \frac{N_{sus,d}}{N_{Ed}}$$

 $N_{sus,d}$ = design value of sustained actions (permanent actions & permanent component of variable actions) N_{Ed} = Value of total actions in tension loading at ultimate limit state

Table 7: Influence of sustained loads on combined pull-out and concrete cone resistance

a	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
f	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases.
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 8: Basic design resistance $N_{Rd,c}^{o}$ in case of concrete cone failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210
Non-cracked concrete								
Concrete cone resistance	N ⁰ _{Rd,c}	[kN]	19.6	23.3	31.5	38.2	60.6	83.2

Table 9: Characteristic edge distance $c_{c_{r,N}}$ and spacing $s_{c_{r,N}}$

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
spacing	S _{cr,N}	[mm]	240	270	330	375	510	630
edge distance	C _{cr,N}	[mm]	120	135	165	188	255	315

Above characteristic spacing and edge distances are given for the typical effective anchorage depths. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr.N} = 3 h_{ef}$$
 and $c_{cr.N} = 1.5 h_{ef}$

a. Influence of concrete strength

Table 10: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

 $^{^{\}rm 1]}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 11: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,p} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx'} f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} , f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

d. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 12: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{ex,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
f _a	0.55	0.56	0.50	0.03	0.00	0.00	0.70	0.73	0.73	0.76	0.80	0.03	0.85	0.00	0.85	0.00	0.73	0.76	1.00

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{hef} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{sy,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{hef} \cdot f_{sy,sp} \cdot f_{sy,sp} \cdot f_{sy,sp} \cdot f_{cy,2,sp} \cdot f_{sy,sp} \cdot$$

Table 13: Design resistance N_{Rd so} in case of concrete splitting failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Non-cracked concrete								
Concrete splitting failure	N ⁰ _{Rd,sp}	[kN]	9.5	12.6	18.4	27.9	47.5	70.4

Table 14: Characteristic edge distance c_{crsp} and spacing s_{crsp}

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210
Characteristic spacing	S _{cr,sp}	[mm]	360	420	528	600	816	1008
Characteristic edge distance	C _{cr,sp}	[mm]	180	210	264	300	408	504
Minimum member thickness	h _{min}	[mm]	110	120	140	161	218	266

Above characteristic spacing and edge distances are given for the typical effective anchorage depth. Calculating for smaller depths leads to conservative load capacities. For calculation with bigger depths, use the following:

$$s_{cr,sp} = 2 \, \cdot \, c_{cr,sp} \qquad \text{and} \qquad c_{cr,sp} = \, \left\{ h_{ef} \, \leq 2 \; h_{ef} \, \cdot \, \left(2.5 \, - \, \left(\frac{h_{min}}{h_{ef}} \right) \right) \, \leq 2.4 \; h_{ef} \right\}$$

and $\boldsymbol{h}_{\scriptscriptstyle{min}}$ according to the table "anchor characteristics".

a. Influence of concrete strength

Table 15: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

 $^{^{2]}}$ strength at 28 days of 150 mm cubes

b. Influence of embedment depth

$$f_{hef} = \left(\frac{h_{ef}}{h_{ef,typ}}\right)^{1.5}$$

Consider the approved range of embedment $h_{ef,min} \le h_{ef,max}$ according to the table "anchor characteristics".

c. Influence of spacing

$$f_{sx,p} = f_{sy,p} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,p}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 16: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥1
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 17: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1
f _{cx,1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.3	2.4	2.7	2.8	2.9
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot min \{N_{Rd,v}, N_{Rd,c}\}$

3. Concrete edge failure $V_{Rd,c} = V_{Rd,c}^0 \cdot f_{b,V} \cdot f_{hef,V} \cdot f_{s,V} \cdot f_{cl,V} \cdot f_{c2,V} \cdot f_a \cdot f_h$

1. Design steel shear resistance

Table 19: Design value of steel resistance V_{Rds} of a single anchor

Thread size				M8	M10	M12	M16	M20	M24
Effective anchorage depth		h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210
	5.8		[kN]	8.8	13.9	20.2	37.7	58.8	84.7
Design steel resistance	8.8	$V_{Rd,s}$	[kN]	12.0	18.4	27.2	50.4	78.4	112.8
	A4		[kN]	8.3	12.8	19.2	35.3	55.1	79.5

2. Design concrete pry-out resistance

$$V_{Rd,c} = k_8 \cdot \min \{N_{Rd,p}; N_{Rd,c}\}$$

Table 20: factor k_g for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0	2.0	2.0

3. Design concrete edge resistance

$$V_{\mathit{Rd,c}} = \ V_{\mathit{Rd,c}}^{0} \cdot f_{\mathit{b,V}} \cdot f_{\mathit{hef,V}} \cdot f_{\mathit{s,V}} \cdot f_{\mathit{c1,V}} \cdot f_{\mathit{c2,V}} \cdot f_{\mathit{a}} \cdot f_{\mathit{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max (10 h_{ef}; 60 d)$. For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 21: Design resistance $V_{p,j}^{0}$ in case of concrete edge failure

Rd,c								
Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	1 <i>7</i> 0	210
Non-cracked concrete								
Basic design edge resistance	V ⁰ _{Rd,c}	[kN]	3.3	4.8	6.5	10.3	15.3	21.1

a. Influence of concrete strength

Table 22: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.12	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of embedment depth

Table 23: Influence of embedment depth on concrete edge resistance

h _{ef} /d	4	5	6	7	8	9	10	11	≥ 12
f _{hef,V}	0.87	0.91	0.94	0.97	1.00	1.02	1.05	1.07	1.08

c. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 24: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

d. Influence of edge distance c₁

Table 20: Influence of edge distance on concrete edge resistance

c _{1/d}	4	8	12	15	20	30	40	50	60	100	150	200
f _{c1,V}	0.47	1.19	2.05	2.76	4.05	6.95	10.22	13.76	17.54	34.66	59.52	87.35

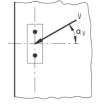
²⁾ strength at 28 days of 150 mm cubes

e. Influence of edge distance c₂

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3}\frac{c_2}{c_1}\right) \left(0.7 + 0.3\frac{c_2}{1.5c_1}\right) \le 1$$

Table 26: Influence of edge distance c2 on concrete edge resistance

c _{2/} c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00


¹⁾ Distance to the second edge: $c1 \le c2$

f. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 27: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For a \geq 90° the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

g. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 28: Influence of concrete member thickness on edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	≥ 1.50
$f_{h,V}$	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

 V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

¹⁾ This verification is not required in case of shear load with lever arm

Design bond strength

Service temperature

	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature		
Temperature range I	- 40°C to +40°C	+24°C	+40°C		
Temperature range II	- 40°C to +80°C	+50°C	+80°C		

Working life of 50 years

1- Non-cracked concrete

Thread size	•			M8	M10	M12	M16	M20	M24	
Design bond resistance in non-cracked concrete C20/25										
Temperature	Dry and wet concrete		[N/mm²]	4.7	4.4	4.4	4.4	4.4	4.4	
range l	Flooded bore hole	τ _{Rd,ucr}		4.7	4.4	4.4	4.4	4.4	4.4	
Temperature range II	Dry and wet concrete			3.6	3.3	3.3	3.3	3.3	3.3	
	Flooded bore hole			3.6	3.3	3.3	3.3	3.3	3.3	

Reduction factor

Working life of 50 years

1- Non-cracked concrete

Thread size	•			M8	M10	M12	M16	M20	M24			
Reduction fac	Reduction factor for non-cracked concrete C20/25											
Temperature	Dry and wet concrete		[N/mm²]	1.00	1.00	1.00	1.00	1.00	1.00			
range l	Flooded bore hole	T _{Rd,ucr}		1.00	1.00	1.00	1.00	1.00	1.00			
Temperature	Dry and wet concrete			1.00	1.00	1.00	1.00	1.00	1.00			
range II	Flooded bore hole			1.00	1.00	1.00	1.00	1.00	1.00			

Mechanical characteristics

Steel grade	Thread size			M8	M10	M12	M16	M20	M24	M27	м30
	Stressed cross section	A _s	[mm ²]	37	58	84	157	245	352	459	561
	Section modulus	W	[mm ³]	31	62	109	277	541	935	1387	1874
	Yield strength	f _y	[N/mm ²]	240	240	240	240	240	240	240	240
4.6	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M _{Rd,s}	[Nm]	9.0	18.0	31.1	79.6	155.7	268.9	398.8	538.9
	Yield strength	f	[N/mm ²]	320	320	320	320	320	320	320	320
4.8	Tensile strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
4.0	Design bending moment	M _{Rd,s}	[Nm]	12.0	24.0	41.6	106.4	208.0	359.2	532.8	720.0
	Yield strength	f _y	[N/mm ²]	300	300	300	300	300	300	300	300
5.6	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M _{Rd,s}	[Nm]	11.4	22.2	38.9	99.4	194.0	335.3	498.8	672.5
	Yield strength	f	[N/mm ²]	400	400	400	400	400	400	400	400
5.8	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
5.0	Design bending moment	M _{Rd,s}	[Nm]	15.2	29.6	52	132.8	259.2	448	666.4	898.4
	Yield strength	f _y	[N/mm ²]	640	640	640	640	640	640	640	640
	Tensile strength	f	[N/mm ²]	800	800	800	800	800	800	800	800
8.8	Design bending moment	M ^O _{Rd,s}	[Nm]	24.0	48.0	84.0	212.8	415.2	716.8	1066.4	1437.6
	Yield strength	f	[N/mm ²]	210	210	210	210	210	210	210	210
A4-50	Tensile strength	f	[N/mm ²]	500	500	500	500	500	500	500	500
A4-3U	Design bending moment	M _{Rd,s}	[Nm]	8.0	15.5	27.7	70.2	136.6	235.7	349.6	472.7
	Yield strength	f	[N/mm ²]	450	450	450	450	450	450	-	-
A4-70	Tensile strength	f	[N/mm ²]	700	700	700	700	700	700	-	-
, , - , 0	Design bending moment	M _{Rd,s}	[Nm]	16.7	33.3	59.0	148.7	291.0	502.6	-	-

Material specifications

Part	Designation	1	Material									
Steel, zinc plated (Steel acc. to EN 10087:1998 or EN 10263:2001)												
- zinc p	olated	≥ 5 µm	acc. to EN ISO 4042:1999									
- hot-dij	p galvanized	≥ 40 µm	acc. to EN ISO 1461	acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009								
- sherai	rdized	≥ 45 µm	acc. to EN ISO 1766	acc. to EN ISO 17668:2016								
			Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
				4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 8%					
1	Anchor rod		acc. to EN ISO 898-	4.8	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A5 > 8%					
			1:2013	5.6	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A5 > 8%					
				5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A5 > 8%					
				8.8	f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A5 > 12% 3)					
				4	for anchor rod class 4.6 or 4.8							
2	Hexagon nut		acc. to EN ISO 898- 2:2012	5	for anchor rod class 5.6 or 5.8							
				8	for anchor rod class 8.8							
3a	Washer				galvanized or sherardize EN ISO 7089:2000, Et	ed N ISO 7093:2000, or E	EN ISO 7094:2000)					
3b	Filling washer		Steel, zinc plated, hot-dip galvanized or sherardized									
			Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
4	Internal thread	led anchor	acc. to	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A5 > 8%					
	rod		EN ISO 898- 1:2013	8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A5 > 8%					

Part	Designation	Material									
Stainl	ess steel A2 (Material 1.4	301 / 1.4303 / 1.43	307 / 1	1.4567 or 1.4541, acc	. to EN 1088-1:2014)						
Stainl	ess steel A4 (Material 1.4	401 / 1.4404 / 1.45	571 / 1	1.4362 or 1.4578, acc	. to EN 10088-1:2014)						
High o	corrosion resistance ste	el (Material 1.4529 d	or 1.45	65, acc. to EN 10088	-1:2014)						
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
1	Anchor rod 1) 4)	acc. to EN ISO 3506-	50	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A5 > 12% ³⁾					
		1:2009	70	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A5 > 12% 3)					
			80	f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A5 > 12% 3)					
		acc. to	50 for anchor rod class 50								
2	Hexagon nut 1) 4)	EN ISO 3506- 1:2009	70	for anchor rod class 70							
		1.2007	80	for anchor rod class 80							
3a	Washer	1:2014) Stainless steel A4 (N 10088-1:2014) HCR: Material 1.45	Stainless steel A2 (Material 1.4301 / 1.4303 / 1.4307 / 1.4567 or 1.4541, acc. to EN 1088-1:2014) Stainless steel A4 (Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN								
3b	Filling washer	Stainless steel A4, H	ligh co	rrosion resistance steel							
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture					
4	Internal threaded anchor	acc. to	50	f _{uk} = 500 N/mm ²	$f_{yk} = 210 \text{ N/mm}^2$	A5 > 8%					
	rod ^{1) 2)}	EN ISO 3506- 1:2009	70	f _{uk} = 700 N/mm ²	f _{vk} = 450 N/mm ²	A5 > 8%					

Property class 70 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16

²⁾ for IG-M20 only property class 50

 $^{^{3)}}$ A5 > 8% fracture elongation if no requirement for performance category C2 exists

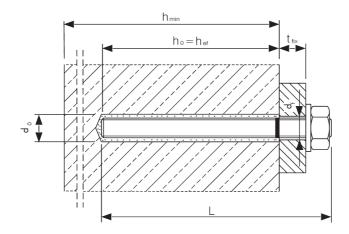
⁴⁾ Property class 80 only for stainless steel A4

Chemical resistance

Chemical agent	Concentration	Resistant	Not resistant
Accumulator acid			•
Acetic acid	40		•
Acetic acid	10	•	
Acetone	10		•
Ammonia, aqueous solution	5	•	
Aniline	100		•
Beer		•	
Benzene (kp 100-140°F)	100	•	
Benzole	100		•
Boric Acid, aqueous solution	100		•
Calcium carbonate, suspended in water	all	•	
Calcium chloride, suspended in water	dii	•	
Calcium hydroxide, suspended in water		•	
Carbon tetrachloride	100	•	
Caustic soda solution	100	•	
Citric acid	all	•	
Diesel oil	100	•	
		•	
Ethyl alcohol, aqueous solution	50		•
Formic acid	100		•
Formaldehyde, aqueous solution	30	•	
Freon		•	
Fuel Oil		•	
Gasoline (premium grade)	100	•	
Glycol (Ethylene glycol)		•	
Hydraulic fluid	conc.	•	
Hydrochloric acid (Muriatic Acid)	conc.		•
Hydrogen peroxide	30		•
Isopropyl alcohol	100		•
Lactic acid	all	•	
Linseed oil	100	•	
Lubricating oil	100	•	
Magnesium chloride, aqueous solution	all	•	
Methanol	100		•
Motor oil (SAE 20 W-50)	100	•	
Nitric acid	10		•
Oleic acid	100	•	
Perchloroethylene	100	•	
Petroleum	100	•	
Phenol, aqueous solution	8		•
Phosphoric acid	85	•	
Potash lye (Potassium hydroxide)	10	•	
Potassium carbonate, aqueous solution	all	•	
Potassium chlorite, aqueous solution	all	•	
Potassium nitrate, aqueous solution	all	•	
Sodium carbonate	all	•	
Sodium Chloride, aqueous solution	all	•	
Sodium phosphate, aqueous solution	all	•	
Sodium silicate	all	•	
Standard Benzine	100	•	
Sulfuric acid	10	-	•
Sulfuric acid	70		•
Tartaric acid	all	•	
Tetrachloroethylene	100	•	
Toluene	100		•
Trichloroethylene	100		•
піспіотоеттутепе	100	•	•

WIT-PM 200 WITH THREADED ROD (METRIC)

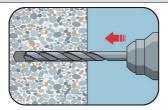
Working and curing times


Temperature of base material (°C)	Gelling - working time (min)	Min. curing time - dry conditions (min) 1)
-5 to -1	90	360
0 to +4	45	180
+5 to +9	25	120
+10 to +14	20	100
+15 to +19	15	80
+20 to 29	6	45
+30 to 34	4	25
+35 to +39	2	20
> 40°C	90 s	15

¹⁾ for wet base material the curing time must be doubled

Installation parameters

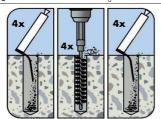
Anchor size			M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	24	28
Eff	h _{ef,min}	[mm]	60	60	70	80	90	96
Lincolive discribinge depili	h _{ef,max}	[mm]	160	200	240	320	400	480
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	9	12	14	18	22	26
Diameter of steel brush	d _b ≤	[mm]	12	14	16	20	26	30
Maximum torque moment	T _{inst} ≤	[Nm]	10	20	40	80	120	160
Thickness of fixture	† _{fix,min} >	[mm]				0		
I nickness of fixture	† _{fix,max} <	[mm]			13	500		
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 3	0 mm ≥ 1	00 mm	mm h _{ef} + 2d _o		
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120



WIT-PM 200 WITH THREADED ROD (METRIC)

Installation instructions

A) Bore hole drilling

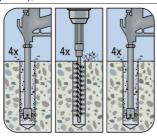


1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. In case of aborted drill hole, the drill hole shall be filled with mortar.

B) Bore hole cleaning

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 150$ mm (non-cracked concrete only!)


2a. Starting from the bottom or back of the bore hole, blow the hole clean using a hand pump a minimum of <u>four</u> times.

2b. Check brush diameter and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of four

If the bore hole ground is not reached with the brush, a brush extension shall be used.

Finally blow the hole clean again with a hand pump a minimum of four times. If the bore hole ground is not reached, an extension shall be used.

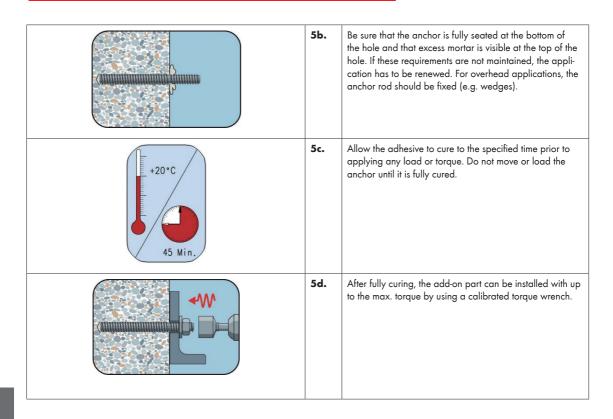
CAC: Cleaning for dry, wet and water-filled bore holes with all diameters (non-cracked concrete only!)

Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

2b. Check brush diameter and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} a minimum of <u>four</u> times.

If the bore hole ground is not reached with the brush, a brush extension shall be used.

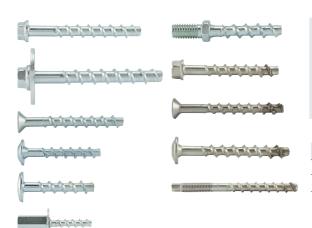
Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of <u>four</u> times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension shall be used.


After cleaning, the bore hole has to be protected against rec-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

3a.	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for every new cartridge, a new static-mixer shall be used.
3b.	Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rod.
Зс.	Prior to dispensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red color (minimum of three full strokes) and discard non-uniformly mixed adhesive components.
4.	Starting from the bottom or back of the cleaned bore hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm, an appropriate extension nozzle must be used. Observe the gel-/ working times.
5a.	Push the threaded rod into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The bar should be free of dirt, grease, oil or other foreign material.
	3b. 3c. 4.

WIT-PM 200 WITH THREADED ROD (METRIC)

Filling Quantity


Anchor type: M8 - M30

Thread size			M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	24	28
Drill depth	h_0/h_1	[mm]	= h _{ef}					
Filling volume per 10mm embedment depth		[ml]	0.53	0.70	0.89	1.27	2.61	3.35

Assumed waste of 15 % included.

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Type of installation		
Pre-positioned	In-place	Stand-off
✓	✓	_

Applications

Approvals and certificates

Description	Authority / laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DiBt, Berlin	EAD 330232-01-0601	ETA-16/0043 / 2019-06-29
European Technical Assessment	DiBt, Berlin	ETAG 001 Part 6	ETA-16/0128 / 2018-04-06
German approval abZ/ aBG	DiBt, Berlin		Z-21.8-2090 / 2020-08-27
Report tension load capacity in hollow slabs	Ing. Büro Thiele, Pirmasens	ETAG 001	21641 / 2016-09-25
Expert Opinion	iBMB MPA, Braunschweig	EN 1363-1:2012-10 / Din 4102-4	2101/173/18 / 2018-08-13

Basic loading data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, f_{ck} = 20 N/mm²
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

Characteristic resistance

Screw size: Ø 6 - Ø 10

Screw size			Ø	6		Ø	8		Ø 10		
Effective and	horage depth		h _{ef}	[mm]	311)	44	351)	43	52	43	60
Non-cracked concrete											
Tension		C20/25	NI	[LNI]	4.0	9.0	7.5	12.0	16.0	12.0	20.0
	W-BS-S, SK; /S;/A4;/	C50/60	N_{Rk}	[kN]	6.3	14.0	11.9	19.0	25.3	19.0	31.6
Shear	1 /5 ; /A4 ; / HCR	C20/25	\/	[kN]	7.0	7.0	10.2	13.5	17.0	13.9	34.0
		C50/60	V_{Rk}		7.0	7.0	13.5	13.5	17.0	21.9	34.0
Cracked co	oncrete										
Tension		C20/25		[LV]	2.0	4.0	5.0	9.0	12.0	9.0	16.0
	W-BS-S, SK;	C50/60	N_{Rk}	[kN]	3.2	6.3	7.9	14.2	19.0	14.2	25.3
Shear	/S;/A4;/ HCR	C20/25	V	[LV]	5.9	7.0	7.1	9.7	12.9	9.7	32.0
		C50/60	V_{Rk}	[kN]	7.0	7.0	11.3	13.5	17.0	15.4	34.0

Screw size							Ø 12		Ø 14		
Effective and	[mm]	68	50	67	80	58	79	92			
Non-crack	ed concrete										
Tension		C20/25		[[]]	26.0	16.0	27.0	35.2	21.7	34.5	43.4
	W-BS-S, SK;		N _{Rk}	[kN]	41.1	25.3	42.7	55.7	34.4	54.6	68.6
Shear	/S;/A4;/ HCR	C20/25		V _{Rk} [kN]	34.0	17.4	40.0	40.0	21.7	56.0	56.0
		C50/60	V _{Rk}		34.0	27.5	40.0	40.0	34.4	56.0	56.0
Cracked co	ncrete										
Tension		C20/25		[] 5 (]	19.3	12.0	18.9	24.6	15.2	24.2	30.4
	W-BS-S, SK;	C50/60	N _{Rk}	[kN]	30.5	19.0	29.9	39.0	24.1	38.2	48.0
Shear	/S;/A4;/ HCR	C20/25	.,	[] 1]	34.0	12.2	37.8	40.0	15.2	48.4	56.0
		C50/60	V _{kR}	[kN]	34.0	19.3	40.0	40.0	24.1	56.0	56.0

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Design resistance

Screw size: Ø 6 - Ø 10

Screw size			Ø	6		Ø	8		Ø 10		
Effective and	horage depth		h _{ef}	[mm]	311)	44	351)	43	52	43	60
Non-cracked concrete											
Tension		C20/25		EL N. IZ	2.7	6.0	5.0	8.0	10.7	8.0	13.3
	W-BS-S, SK; /S;/A4;/	C50/60	N _{Rd}	[kN]	4.2	9.3	7.9	12.6	16.9	12.6	21.1
Shear	/S;/A4;/ HCR	C20/25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{Rd} [kN]	5.6	5.6	6.8	9.2	12.3	9.2	27.2
		C50/60	V _{Rd}		5.6	5.6	10.7	10.8	13.6	14.6	27.2
Cracked co	oncrete									,	
Tension		C20/25	N.	[LNI]	1.3	2.7	3.3	6.0	8.0	6.0	10.7
	W-BS-S, SK;	C50/60	N	[kN]	2.1	4.2	5.3	9.5	12.6	9.5	16.9
Shear	/S;/A4;/ HCR	C20/25	V	[LNI]	4.0	5.6	4.8	6.5	8.6	6.5	21.3
		C50/60	V _{Rd}	[kN]	5.6	5.6	7.5	10.2	13.6	10.2	27.2

Screw size						Ø 12			Ø 14		
Effective anch	[mm]	68	50	67	80	58	<i>7</i> 9	92			
Non-cracke	ed concrete										
Tension		C20/25	NI	[LAJ]	1 <i>7</i> .3	10.7	18.0	23.5	14.5	23.0	28.9
	W-BS-S, SK; /S;/A4;/	C50/60	N _{Rd}	[kN]	27.4	16.9	28.4	37.1	22.9	36.4	45.8
Shear	/S;/A4;/ HCR	C20/25	\/	[LNI]	27.2	11.6	32.0	32.0	14.5	44.8	44.8
		C50/60	V_{Rd}	[kN]	27.2	18.3	32.0	32.0	22.9	44.8	44.8
Cracked co	ncrete										
Tension		C20/25	NI	[LNI]	12.9	8.0	12.6	16.4	10.1	16.1	20.3
	W-BS-S, SK;	C50/60	N_{Rd}	[kN]	20.4	12.6	19.9	26.0	16.0	25.5	32.0
Shear	/S;/A4;/ HCR	C20/25	V	[kN]	25.7	8.1	25.2	32.0	10.1	32.2	40.5
		C50/60	V _{Rd}	[KIN]	27.2	12.8	32.0	32.0	16.0	44.8	44.8

 $^{^{1)}}$ Use restricted to anchoring of structural components that are statically indeterminate

Recommended/allowable loads 1)

Screw size: Ø 6 - Ø 10

Screw size			Ø	6		Ø	8		Ø 10		
Effective anch	[mm]	31 ²⁾	44	35 ²⁾	43	52	43	60			
Non-cracked concrete											
Tension		C20/25	[] []	1.9	4.3	3.6	5.7	7.6	5.7	9.5	
	W-BS-S, SK;	C50/60	N _{rec}	[kN]	3.0	6.7	5.6	9.0	12.0	9.0	15.1
Shear	/S;/A4;/ HCR	C20/25	.,	V _{rec} [kN]	4.0	4.0	4.9	6.6	8.8	6.6	19.4
		C50/60	V		4.0	4.0	7.7	7.7	9.7	10.4	19.4
Cracked co	ncrete										
Tension		C20/25	N	[LAI]	1.0	1.9	2.4	4.3	5.7	4.3	7.6
	W-BS-S, SK;	C50/60	IN	[kN]	1.5	3.0	3.8	6.8	9.0	6.8	12.0
Shear	/S;/A4;/ HCR	C20/25	.,	FI N II	2.8	4.0	3.4	4.6	6.1	4.6	15.2
		C50/60	V _{rec}	[kN]	4.0	4.0	5.4	7.3	9.7	7.3	19.4

 $^{^{1)}}$ Material safety factor $\gamma_{\rm M}$ and safety factor for action $\gamma_{\rm L}$ = 1.4 are included. The material safety factor depends on the failure mode.

Screw size	·		,	,	Ø 10		Ø 12			Ø 14	
Effective and	chorage depth		h _{ef}	[mm]	68	50	67	80	58	79	92
Non-crack	ced concrete										
Tension		C20/25	N.	[kN]	12.4	7.6	12.8	16.8	10.3	16.4	20.7
	W-BS-S, SK;	C50/60	N rec	[KIV]	19.6	12.0	20.3	26.5	16.4	26.0	32.7
Shear	/S;/A4;/ HCR	C20/25		[LNI]	19.4	8.3	22.9	22.9	10.3	32.0	32.0
		C50/60	V _{rec}	[kN]	19.4	13.1	22.9	22.9	16.4	32.0	32.0
Cracked c	oncrete										
Tension		C20/25	NI	[LNI]	9.2	5.7	9.0	11.7	7.2	11.5	14.5
	W-BS-S, SK;	C50/60	N _{rec}	[kN]	14.5	9.0	14.2	18.6	11.5	18.2	22.9
Shear	/S;/A4;/ HCR	C20/25		[kN] -	18.4	5.8	18.0	22.9	7.2	23.0	28.9
		C50/60	rec		19.4	9.2	22.9	22.9	11.5	32.0	32.0

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{L}}$ = 1.4 are included. The material safety factor depends on the failure mode. $^{2)}$ Use restricted to anchoring of structural components that are statically indeterminate.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- · Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table
- Anchorage depths h_{ef} < 40 mm are restricted to use of structural components with which are statically indeterminate
 and subject to internal exposure conditions only

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} \cdot f_{Rd,sp} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load $N_{\rm Ed.s}$ of a single anchor

Screw size: Ø 6 - Ø 10

Screw size			ø	6		Ø	8		Ø 10
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60
Design steel resistance	N _{Rd,s}	[kN]	9.3	9.3	18.0	18.0	18.0	30.0	30.0

Screw size			Ø 10		Ø 12			Ø 14	
Effective anchorage depth	h _{ef}	[mm]	68	50	67	80	58	<i>7</i> 9	92
Design steel resistance	N _{Rd,s}	[kN]	30.0	44.7	44.7	44.7	62.7	62.7	62.7

2. Design pullout resistance

 $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

Table 2: Basic design resistance $N_{\rm Rd,p}^{\rm o}$ in case of pull-out failure of a single anchor

Screw size: Ø 6 - Ø 10

Screw size			Ø	6		Ø	Ø 8				
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60		
Non-cracked concrete											
Pull-out resistance	N o Rd,p	[kN]	2.7	6.0	5.0	8.0	10.7	8.0	13.3		
Cracked concrete											
Pull-out resistance	$N_{Rd,p}^0$	[kN]	1.3	2.7	3.3	6.0	8.0	6.0	10.7		

Screw size: Ø 10 - Ø 14

Screw size			Ø 10		Ø 12			Ø 14			
Effective anchorage depth	h _{ef}	[mm]	68	50	67	80	58	79	92		
Non-cracked concrete											
Pull-out resistance	N O Rd,p	[kN]	1 <i>7</i> .3	10.7	18.0	23.5	14.5	23.0	28.9		
Cracked concrete											
Pull-out resistance	N ⁰ _{Rd,p}	[kN]	12.9	8.0	12.6	16.4	10.1	16.1	20.3		

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

 $^{^{2)}\}mbox{strength}$ at 28 days of 150 mm cubes

3. Design concrete cone resistance

 $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

Table 4: Basic design resistance $N^{o}_{_{Rd,c}}$ in case of concrete cone failure of a single anchor

Screw size: Ø 6 – Ø 10

Screw size			Ø	6		Ø	8		Ø 10		
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60		
Non-cracked concrete											
Cone resistance	N ⁰ _{Rd,c}	[kN]	5.7	9.6	6.8	9.2	12.3	9.2	15.2		
Cracked concrete											
Cone resistance	N ⁰ _{Rd,c}	[kN]	4.0	6.7	4.8	6.5	8.6	6.5	10.7		

Screw size: Ø 10 - Ø 14

Screw size			Ø 10		Ø 12			Ø 14		
Effective anchorage depth	h _{ef}	[mm]	68	50	67	80	58	79	92	
Non-cracked concrete										
Cone resistance	N ⁰ _{Rd,c}	[kN]	18.4	11.6	18.0	23.5	14.5	23.0	28.9	
Cracked concrete										
Cone resistance	N ⁰ _{Rd,c}	[kN]	12.9	8.1	12.6	16.4	10.1	16.1	20.3	

Table 5: Characteristic edge distance c_{c_rN} and spacing s_{c_rN}

Screw size: Ø 6 – Ø 10

Screw size			Ø	6			Ø 10		
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60
Characteristic spacing	S _{cr,N}	[kN]	93	132	105	129	156	129	180
Characteristic edge distance	C _{cr,N}	[kN]	47	66	53	65	78	65	90

Screw size			Ø 10		Ø 12			Ø 14	
Effective anchorage depth	h _{ef}	[mm]	68	50	67	80	58	<i>7</i> 9	92
Characteristic spacing	S _{cr,N}	[kN]	204	150	201	240	174	237	276
Characteristic edge distance	C _{cr,N}	[kN]	102	75	101	120	87	119	138

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	$f_{sx'}f_{sy}$	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	$f_{sx'}f_{sy}$	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 8: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

 $N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \le 0.3$ mm

Table 9: Design resistance $N^0_{\rm Rd,sp}$ in case of concrete splitting failure of a single anchor

Screw size: Ø 6 - Ø 10

Screw size			Ø	6		Ø	8		Ø 10
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60
Non-cracked concrete									
Splitting resistance	N ⁰ _{Rd,sp}	[kN]	2.7	6.0	5.0	8.0	10.7	8.0	13.3

Screw size: Ø 10 - Ø 14

Screw size			Ø 10		Ø 12			Ø 14	
Effective anchorage depth	h _{ef}	[mm]	68	50	67	80	58	79	92
Non-cracked concrete									
Splitting resistance	N ⁰ _{Rd,sp}	[kN]	17.3	10.7	18.0	23.5	14.5	23.0	28.9

Table 10: Characteristic edge distance $c_{cr,sp}$ and spacing $s_{cr,sp}$

Screw size: Ø 6 - Ø 10

Screw size			Ø	6		Ø	8		Ø 10
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60
Characteristic spacing	S _{cr,sp}	[mm]	120	160	120	140	150	140	180
Characteristic edge distance	C _{cr,sp}	[mm]	60	80	60	70	75	70	90
Minimum member thickness	h _{min}	[mm]	100	100	100	100	120	100	130

Screw size			Ø 10		Ø 12			Ø 14	
Effective anchorage depth	h _{ef}	[mm]	68	50	67	80	58	79	92
Characteristic spacing	S _{cr,sp}	[mm]	210	150	210	240	180	240	280
Characteristic edge distance	C cr,sp	[mm]	105	75	105	120	90	120	140
Minimum member thickness	h _{min}	[mm]	130	120	130	150	130	150	170

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders 1)	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , f sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 13: Influence of edge distance on splitting resistance

			-																
c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.40	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
f _{cy, sp}	0.55	0.56	0.60	0.03	0.03	0.08	0.70	0.73	0.73	0.76	0.80	0.63	0.83	0.00	0.65	0.00	0.93	0.96	1.00

²⁾ strength at 28 days of 150 mm cubes

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f,	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{_{\!R \alpha}}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

3. Concrete edge failure $V_{Rd,c} = V_{Rd,c}^0 \cdot f_{b,V} \cdot f_{s,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{b}$

1. Design steel shear resistance

Table 15: Design value of steel resistance $V_{\rm Rd,s}$ of a single anchor

Screw size: Ø 6 - Ø 10

Screw size			Ø	6		Ø	8		Ø 10
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60
Design steel resistance	V _{Rd,s}	[kN]	5.6	5.6	10.8	10.8	13.6	18.0	27.2

Screw size			Ø 10		Ø 12			Ø 14	
Effective anchorage depth	h _{ef}	[mm]	68	50	67	80	58	<i>7</i> 9	92
Design steel resistance	V _{Rd,s}	[kN]	27.2	26.8	32.0	32.0	44.8	44.8	44.8

2. Concrete pry-out resistance

$$V_{Rd,c} = k_g \cdot N_{Rd,c}$$

Table 16: factor k_{g} for calculating design pry-out resistance

Screw size: Ø 6 - Ø 10

Screw size			Ø	6		Ø	8		Ø 10
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60
Concrete pry-out resistance factor	k ₈	[-]	1.0	1.0	1.0	1.0	1.0	1.0	2.0

Screw size: Ø 10 - Ø 14

Screw size			Ø 10		Ø 12			Ø 14	
Effective anchorage depth	h _{ef}	[mm]	68	50	67	80	58	79	92
Concrete pry-out resistance factor	k ₈	[-]	2.0	1.0	2.0	2.0	1.0	2.0	2.0

3. Concrete edge resistance

$$V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{s,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{h}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V_{\rm Rd,c}^{\rm O}$ in case of concrete edge failure

Screw size: Ø 6 – Ø 10

Screw size		Ø	6				Ø	8				Ø	10	
h _{ef} [mm]	3	1	4	4	3	5	4	.3	5	2	4	.3	6	0
Edge distance c,							V	rO Rd,c						
[mm]							[k	(N]						
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
40	2.7	1.9	2.8	2.0	2.8	2.0	-	-	-	-	-	-	-	-
45	3.2	2.2	3.3	2.4	3.3	2.4	-	-	-	-	-	-	-	-
50	3.6	2.6	3.8	2.7	3.9	2.7	4.0	2.8	4.1	2.9	4.1	2.9	4.4	3.1
55	4.2	2.9	4.4	3.1	4.4	3.1	4.5	3.2	4.7	3.3	4.7	3.3	5.0	3.5
60	4.7	3.3	4.9	3.5	4.9	3.5	5.1	3.6	5.3	3.7	5.3	3.7	5.6	3.9
65	5.3	3.7	5.5	3.9	5.5	3.9	5.7	4.0	5.9	4.1	5.9	4.1	6.2	4.4
70	5.8	4.1	6.1	4.3	6.1	4.3	6.3	4.5	6.5	4.6	6.5	4.6	6.8	4.8
75	6.4	4.5	6.7	4.7	6.7	4.8	6.9	4.9	7.1	5.0	7.1	5.0	7.5	5.3
80	7.0	5.0	7.3	5.2	7.4	5.2	7.6	5.4	7.8	5.5	7.8	5.5	8.2	5.8
85	7.6	5.4	8.0	5.6	8.0	5.7	8.2	5.8	8.4	6.0	8.4	6.0	8.9	6.3
90	8.3	5.9	8.6	6.1	8.7	6.1	8.9	6.3	9.1	6.5	9.1	6.5	9.6	6.8
95	8.9	6.3	9.3	6.6	9.3	6.6	9.6	6.8	9.8	7.0	9.8	7.0	10.3	7.3
100	9.6	6.8	10.0	7.1	10.0	7.1	10.3	7.3	10.6	7.5	10.6	7.5	11.1	7.8
110	11.0	7.8	11.4	8.1	11.5	8.1	11. <i>7</i>	8.3	12.0	8.5	12.0	8.5	12.6	8.9
120	12.4	8.8	12.9	9.1	12.9	9.2	13.3	9.4	13.6	9.6	13.6	9.6	14.2	10.1
130	13.9	9.9	14.4	10.2	14.5	10.3	14.8	10.5	15.2	10. <i>7</i>	15.2	10.7	15.8	11.2
140	15.5	11.0	16.0	11.4	16.1	11.4	16.4	11.6	16.8	11.9	16.8	11.9	1 <i>7</i> .5	12.4
150	17.1	12.1	17.7	12.5	17.7	12.5	18.1	12.8	18.5	13.1	18.5	13.1	19.3	13.7
160	18. <i>7</i>	13.3	19.4	13. <i>7</i>	19.4	13. <i>7</i>	19.8	14.0	20.3	14.3	20.3	14.3	21.1	14.9
170	20.4	14.5	21.1	14.9	21.1	15.0	21.6	15.3	22.0	15.6	22.0	15.6	22.9	16.2
180	22.1	1 <i>5.7</i>	22.9	16.2	22.9	16.2	23.4	16.6	23.9	16.9	23.9	16.9	24.8	1 <i>7</i> .6
190	23.9	16.9	24.7	1 <i>7</i> .5	24.7	1 <i>7</i> .5	25.3	1 <i>7</i> .9	25.8	18.3	25.8	18.2	26.8	19.0
200	25.8	18.2	26.6	18.8	26.6	18.8	27.2	19.2	27.7	19.6	27.7	19.6	28.7	20.4
250	35.5	25.1	36.5	25.8	36.6	25.9	37.2	26.4	37.9	26.9	37.9	26.9	39.3	27.8
300	46.1	32.6	47.3	33.5	47.4	33.6	48.3	34.2	49.1	34.8	49.1	34.8	50.7	35.9
350	57.5	40.8	59.0	41.8	59.1	41.9	60.1	42.6	61.1	43.3	61.1	43.3	63.0	44.6
400	-	-	71.5	50.7	71.6	50.7	72.8	51.6	73.9	52.4	73.9	52.3	76.1	53.9
450	-	-	-	-	84.8	60.1	86.2	61.0	87.5	61.9	87.4	61.9	90.0	63.7
500	-	-	-	-		-	-	-	101.7	72.0	101.7	72.0	104.5	74.0
550	-	-	-	-	-	-	-	-	-	-	116.5	82.5	119.7	84.8
600	-	-	-	-	-	-	-	-	-	-	132.0	93.5	135.5	96.0

Screw size	Ø	10			Ø	12					14			
h _{ef} [mm]	6	8	5	0	6	7	8	0	5	8	7	'9	9	2
Edge distance c					,		٧	'0 Rd,c						
[mm]								:N]						
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
50	4.5	3.2	4.4	3.1	4.6	3.3	-	_	4.6	3.3	-	_	-	_
55	5.1	3.6	4.9	3.5	5.2	3.7	-	_	5.2	3.7		_	_	
60	5.7	4.0	5.5	3.9	5.9	4.2	_	_	5.8	4.1		_	_	-
65	6.3	4.5	6.2	4.4	6.5	4.6	-	-	6.5	4.6		-	-	-
70	7.0	5.0	6.8	4.8	7.2	5.1	7.4	5.3	7.2	5.1	7.6	5.4	7.9	5.6
75	7.7	5.4	7.5	5.3	7.9	5.6	8.1	5.8	7.8	5.6	8.3	5.9	8.6	6.1
80	8.4	5.9	8.1	5.8	8.6	6.1	8.9	6.3	8.5	6.0	9.1	6.4	9.3	6.6
85	9.1	6.4	8.8	6.3	9.3	6.6	9.6	6.8	9.3	6.6	9.8	6.9	10.1	7.2
90	9.8	6.9	9.5	6.8	10.0	7.1	10.3	7.3	10.0	<i>7</i> .1	10.6	7.5	10.9	7.7
95	10.5	7.5	10.3	7.3	10.8	7.6	11.1	7.9	10.7	7.6	11.4	8.0	11.7	8.3
100	11.3	8.0	11.0	7.8	11.5	8.2	11.9	8.4	11.5	8.2	12.1	8.6	12.5	8.9
110	12.8	9.1	12.5	8.9	13.1	9.3	13.5	9.6	13.1	9.3	13.8	9.8	14.2	10.0
120	14.5	10.2	14.1	10.0	14.8	10.5	15.2	10.8	14.7	10.4	15.5	11.0	15.9	11.3
130	16.1	11.4	15.8	11.2	16.5	11.7	16.9	12.0	16.4	11.6	17.2	12.2	17.7	12.5
140	17.8	12.6	17.5	12.4	18.2	12.9	18. <i>7</i>	13.2	18.1	12.9	19.0	13.5	19.5	13.8
150	19.6	13.9	19.2	13.6	20.0	14.2	20.5	14.5	19.9	14.1	20.9	14.8	21.4	15.2
160	21.4	15.2	21.0	14.9	21.8	15.5	22.4	15.9	21.8	15.4	22.8	16.1	23.4	16.5
170	23.3	16.5	22.8	16.2	23.7	16.8	24.3	17.2	23.7	16.8	24.8	17.5	25.3	17.9
180	25.2	17.9	24.7	1 <i>7</i> .5	25.7	18.2	26.3	18.6	25.6	18.1	26.8	18.9	27.4	19.4
190	27.2	19.3	26.7	18.9	27.7	19.6	28.3	20.1	27.6	19.5	28.8	20.4	29.4	20.9
200	29.2	20.7	28.6	20.3	29.7	21.0	30.4	21.5	29.6	21.0	30.9	21.9	31.6	22.4
250	39.8	28.2	39.1	27.7	40.4	28.7	41.3	29.3	40.3	28.6	41.9	29.7	42.8	30.3
300	51.4	36.4	50.5	35.8	52.1	36.9	53.2	37.7	52.0	36.9	53.9	38.2	55.0	38.9
350	63.8	45.2	62.8	44.5	64.7	45.8	66.0	46.7	64.6	45.7	66.8	47.3	68.0	48.2
400	77.0	54.6	75.9	53. <i>7</i>	78.1	55.3	79.5	56.3	77.9	55.2	80.5	57.0	81.9	58.0
450	91.0	64.4	89.7	63.5	92.2	65.3	93.8	66.4	92.0	65.2	94.9	67.2	96.5	68.3
500	105.6	74.8	104.2	73.8	107.0	75.8	108.8	77.0	106.8	75.6	110.0	77.9	111.8	79.2
550	120.9	85.7	119.3	84.5	122.4	86.7	124.4	88.1	122.2	86.5	125.8	89.1	127.7	90.5
600	136.9	97.0	135.1	95.7	138.5	98.1	140.7	99.7	138.2	97.9	142.2	100.7	144.3	102.2
650	153.4	108.7	151.5	107.3	155.2	109.9	157.6	111.6	154.9	109. <i>7</i>	159.2	112.8	161.5	114.4
700	-	-	168.4	119.3	172.4	122.1	175.0	124.0	172.2	121.9	176.8	125.3	179.3	127.0
750	-	-	-	-	-	-	193.1	136.8	189.9	134.5	195.0	138.1	197.7	140.0
800	-	-	-	-	-	-	211.6	149.9	208.3	147.5	213.7	151.4	216.6	153.4
850	-	-	-	-	-	-	-	-	-	-	-	-	236.0	167.1
900	-	-	-	-	-	-	-	-	-	-	-	-	255.9	181.3

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

s/c ₁ 1)	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

^{1]} Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of edge distance

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

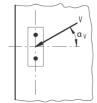
$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3} \frac{c_2}{c_1}\right) \left(0.7 + 0.3 \frac{c_2}{1.5 c_1}\right)$$

Table 20: Influence of edge distance on concrete edge resistance

		,		U		
c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f	0.75	0.80	0.85	0.90	0.95	1.00

¹⁾ Distance to the second edge: $c_1 \le c_2$

²⁾ strength at 28 days of 150 mm cubes


d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

¹⁾ This verification is not required in case of shear load with lever arm

Mechanical characteristics

Screw size: Ø 6 - Ø 10

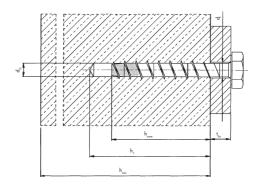
Screw size			Ø6	Ø6	Ø 8	Ø 8	Ø 8	Ø8	Ø 10
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60
Stressed cross section of threaded part									
Stressed cross section	A _s	[mm ²]	20.4	20.4	39.6	39.6	39.6	65.0	65.0
Section modulus	W	[mm ³]	13.0	13.0	35.1	35.1	35.1	74.0	74.0
Yield strength	f _y	[N/mm ²]	560	560	560	560	560	560	560
Tensile strength	f _u	[N/mm ²]	700	700	700	700	700	700	700
Characteristic bending moment	M ^O _{Rk,s}	[Nm]	10.9	10.9	26.0	26.0	26.0	56.0	56.0
Partial factor	Y _{Ms}	[-]	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Design bending moment	M ⁰ _{Rd,s}	[Nm]	8.7	8.7	20.8	20.8	20.8	44.8	44.8

Screw size			Ø 10	Ø 12	Ø 12	Ø 12	Ø 14	Ø 14	Ø 14
Effective anchorage depth	h _{ef}	[mm]	68	50	67	80	58	79	92
Stressed cross section of threaded part									
Stressed cross section	A _s	[mm ²]	65.0	96.8	96.8	96.8	134.8	134.8	134.8
Section modulus	W	[mm ³]	74.0	134.3	134.3	134.3	220.7	220.7	220.7
Yield strength	f _y	[N/mm ²]	560	560	560	560	560	560	560
Tensile strength	f	[N/mm ²]	700	700	700	700	700	700	700
Characteristic bending moment	M ^O _{Rk,s}	[Nm]	56.0	113.0	113.0	113.0	185.0	185.0	185.0
Partial factor	Y _{Ms}	[-]	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Design bending moment	M ^O _{Rd,s}	[Nm]	44.8	90.4	90.4	90.4	148.0	148.0	148.0

Material specifications

Part	Profile	Head configuration	Product description
1		0	Configuration with metric stud and hexagon socket e.g. W-BS 8x105 Type ST M10 SW5
2		0	Configuration with metric stud and hexagon drive e.g. W-BS 8x105 Type ST M10 SW7
3		(4-8 ₀)	Configuration with washer and hexagon head e.g. W-BS 8x80 Type S SW13
4		(4-85) 2-1-0	Configuration with washer and hexagon head with TX drive e.g. W-BS 8x80 Type S TX 40
5		(\$ °)	Configuration with hexagon head e.g. W-BS 80x80 Type S SW13
6		(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	Configuration with countersunk head and TX drive e.g. W-BS 8x80 Type SK TX 40
7		(3)-10)	Configuration with pan head and TX drive e.g. W-BS 8x80 Type P TX 40
8		(8) (4.8°)	Configuration with large pan head and TX drive e.g. W-BS 8x80 Type P TX 40
9			Configuration with hexagon drive and metric stud e.g. W-BS 6x55 Type ST M8 SW 10
10	= 1=++++++		Configuration with internal thread and hexagon drive e.g. W-BS 6x55 Type I M8/M10

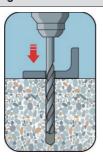
Part	Product name	Material
	W-BS/S	- Steel EN 10263-42017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (\geq 5 μ m)
1-10	W-BS/A4	1.4401; 1.4404; 1.4571; 1.4578
	W-BS/HCR	1.4529


Installation parameters

Screw size: Ø 6 - Ø 10

Screw size			Ø6	Ø6	Ø8	Ø 8	Ø8	Ø 10	Ø 10
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75
Nominal drill hole diameter	d _o	[mm]		6		8		10	
Cutting diameter of drill bit	d _{cut} ≥	[mm]	6	.4		8.45		10	.45
Drill hole depth	h₁ ≥	[mm]	45	60	55	65	75	65	85
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	8			12		1	4
Installation torque (version with connection thread)	T _{inst}	[Nm]	1	0		20		4	0
Torque impact screw driver 1)	T _{im.max}	[Nm]	10	50		300		40	00
Minimum thickness of member	h _{min}	[mm]	100		10	00 120		100	130
Minimum edge distance	C _{min}	[mm]	40		40 50		0	50	
Minimum spacing	S _{min}	[mm]	40		40 50		50		

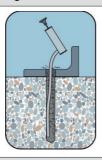
Screw size			Ø 10	Ø 12	Ø 12	Ø 12	Ø 14	Ø 14	Ø 14	
Nominal embedment depth	h _{nom}	[mm]	85	65	85	100	75	100	115	
Nominal drill hole diameter	d _o	[mm]	10	12			14			
Cutting diameter of drill bit	d _{cut} ≥	[mm]	10.45		12.5		14.5			
Drill hole depth	h₁ ≥	[mm]	95	75	95	110	85	110	125	
Diameter of clearance in hole in the fixture	d.≤				16			18		
Installation torque (version with connection thread)	T _{inst}	[Nm]	40		60			80		
Torque impact screw driver 1)	T _{im.max}	[Nm]	400		650			650		
Minimum thickness of member	h _{min}	[mm]	130	120	130	150	130	150	170	
Minimum edge distance	C _{min}	[mm]	50	50 70 50		50	50 70			
Minimum spacing	S _{min}	[mm]	50	50 70 50			7	0		


 $^{^{\}rm 1]}$ Max. torque according to manufacturer's instructions

Installation instructions

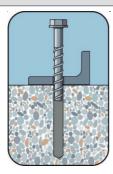
A) Bore hole drilling

1a. Hammer drilling (HD)


Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. Proceed with Step B.

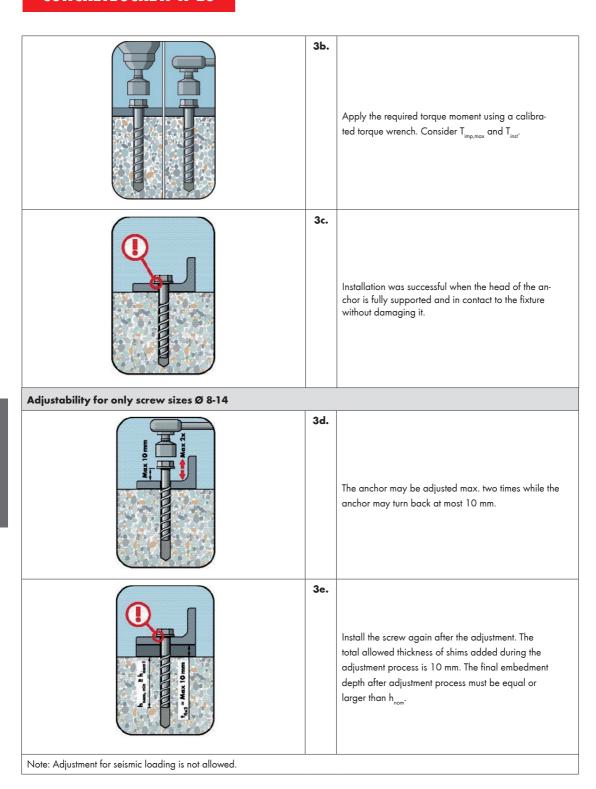
1b. Hollow drill bit system (HDB) (only Ø 8-14)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. This drilling system removes the dust and cleans the bore hole during drilling. Proceed with Step C.


B) Bore hole cleaning

2.

Clean the bore hole from the bottom until the return air stream is without dust.


C) Setting the screw

3a.

Drive the anchor with some hammer strike or with the machine setting tool into the drill hole. Ensure the specified embedment depth.

FIXANCHOR W-FAZ/S

Galvanized (5 microns): M8 - M27

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Type of installation		
Pre-positioned	In-place	Stand-off
	✓	-

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	EAD 330232-01-0601	ETA-99/0011/2018-10-02
ICC-ES Evaluation Report	ICC	AC 193	ESR-2461 /2012-09-01
Fire resistance	DIBt, Berlin	TR 020	ETA-99/0011/2018-10-12
Sprinkler systems	VdS	VdS CEA 4001:2010-11 (04)	27.03.12
Evaluation Report high strength concrete C80/95	Ing. Büro Thiele, Pirmasens	EAD 330232-01-0601 /ETAG 001	21742_2 /2017-08-10
Shock test, Critical infra- structure protection	BABS, CH-Bern		BZS D 09-0604 /2010-05-18

Basic loading data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, f_{ck} = 20 N/mm²
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

Mean ultimate resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	
Effective anchorage depth		h _{ef}	[mm]	46	60	70	85	100	115	125	
Non-cracked concrete											
Tension	C20/25	N _{Ru,m}	[kN]	13.4	19.4	31.1	41.0	55.0	90.4	84.7	
Shear	C20/25	V _{Ru,m}	[kN]	14.5	24.0	36.1	60.0	89.0	131.8	181. <i>7</i>	
Cracked concrete											
Tension	C20/25	N _{Ru,m}	[kN]	9.5	13.6	25.7	32.4	49.6	72.8	73.0	
Shear	C20/25	V _{Ru,m}	[kN]	14.5	24.0	36.1	60.0	89.0	131.8	181.7	

Characteristic resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	
Effective anchorage depth		h _{ef}	[mm]	46	60	70	85	100	115	125	
Non-cracked concrete											
Tension	C20/25	N.	[[.k.l]	12.0	16.0	25.0	35.0	49.2	60.7	68.8	
rension	C50/65	N _{Rk}	[kN]	16.0	25.3	39.5	55.3	77.8	95.9	108. <i>7</i>	
Shear	C20/25		[kN]	12.2	20.1	30.0	55.0	69.0	114.0	169.4	
Snear	C50/65	V_{Rk}		12.2	20.1	30.0	55.0	69.0	114.0	169.4	
Cracked concrete											
т .	C20/25	l N	[kN]	5.0	9.0	16.0	25.0	34.4	42.5	48.1	
Tension	C50/65	N _{Rk}	[KIN]	7.9	14.2	25.3	39.5	54.4	67.1	<i>7</i> 6.1	
Shear	C20/25		[].N.[]	12.2	20.1	30.0	55.0	69.0	114.0	134.8	
	C50/65	V _{Rk}	[kN]	12.2	20.1	30.0	55.0	69.0	114.0	169.4	

FIXANCHOR W-FAZ/S

Design resistance

Thread size				M8	M10	M12	M16	M20	M24	M27	
Effective anchorage depth		h _{ef}	[mm]	46	60	70	85	100	115	125	
Non-cracked concrete											
Tamaian	C20/25	NI.	[kN]	8.0	10.7	16. <i>7</i>	23.3	32.8	40.4	45.8	
Tension	C50/65	N _{Rd}	[KIN]	10.5	16.9	26.4	36.9	51.9	63.9	72.5	
Shear	C20/25	.,	[kN]	9.8	16.1	24.0	44.0	51.9	91.2	128.3	
Snear	C50/65	V _{Rd}		9.8	16.1	24.0	44.0	51.9	91.2	135.5	
Cracked concrete											
т .	C20/25	N.	[LVI]	3.3	6.0	10. <i>7</i>	16.7	23.0	28.3	32.1	
Tension C5	C50/65	N _{Rd}	[kN]	5.3	9.5	16.9	26.4	36.3	44.8	50.7	
Shear	C20/25	\ \ \ \	[[,k,1]	9.8	16.1	24.0	43.2	51.9	79.3	89.8	
	C50/65	V _{Rd}	[kN]	9.8	16.1	24.0	44.0	51.9	91.2	135.5	

Recommended/allowable loads 1)

Thread size				M8	M10	M12	M16	M20	M24	M27
Effective anchorage depth		h _{ef}	[mm]	46	60	70	85	100	115	125
Non-cracked concrete										
Tension	C20/25	Ν	[].N.[]	5.7	7.6	11.9	16. <i>7</i>	23.4	28.9	32.7
rension	C50/65	IN	[kN]	7.5	12.0	18.8	26.4	3 <i>7</i> .0	45.7	51.8
Shear	C20/25	\/	[kN]	7.0	11.5	1 <i>7</i> .1	31.4	3 <i>7</i> .1	65.1	91. <i>7</i>
Snear	C50/65	V _{rec}		7.0	11.5	1 <i>7</i> .1	31.4	3 <i>7</i> .1	65.1	96.8
Cracked concrete										
Tension	C20/25	NI.	[kN]	2.4	4.3	7.6	11.9	16.4	20.2	22.9
rension	C50/65	N _{rec}	[KIN]	3.8	6.8	12.0	18.8	25.9	32.0	36.2
Shear	C20/25	V	[].N.[]	7.0	11.5	1 <i>7</i> .1	30.8	3 <i>7</i> .1	56.6	64.2
Snear	C50/65	rec	[kN]	7.0	11.5	1 <i>7</i> .1	31.4	3 <i>7</i> .1	65.1	96.8

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{L}}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design Method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- · Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load $N_{\rm Rds}$ of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Design steel resistance	N _{Rd,s}	[kN]	10.5	17.6	26.7	40.0	53.8	84.0	130.7

2. Design pullout resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$$

Table 2: Basic design resistance No. in case of pull-out failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27		
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125		
Non-cracked concrete											
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	8.0	10.7	16.7	23.3	32.8	40.4	45.8		
Cracked concrete											
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	3.3	6.0	10.7	16.7	23.0	28.3	32.1		

FIXANCHOR W-FAZ/S

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f_{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance N_{Rdc}° in case of concrete cone failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27			
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125			
Non-cracked concrete												
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	10.2	15.2	19.2	25.7	32.8	40.4	45.8			
Cracked concrete												
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	7.2	10.7	13.4	18.0	23.0	28.3	32.1			

Table 5: Characteristic edge distance $c_{ct,N}$ and spacing $s_{ct,N}$

Thread size			M8	M10	M12	M16	M20	M24	M27
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Characteristic spacing	S _{cr, N}	[mm]	138	180	210	255	300	345	375
Characteristic edge distance	C _{cr. N}	[mm]	69	90	105	128	150	173	188

²⁾ strength at 28 days of 150 mm cubes

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f_{sx}, f_{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 8: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

FIXANCHOR W-FAZ/S

4. Design splitting resistance

 $N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \le 0.3$ mm

Table 9: Design resistance N_{Rdsp}^0 in case of concrete splitting failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27			
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125			
Non-cracked concrete												
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	6.0	8.0	13.3	20.0	26.7	41.5	33.3			

Table 10: Characteristic edge distance c and spacing s

Thread size		C CI,SP	M8	M10	M12	M16	M20	M24	M27
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Characteristic spacing	S _{cr, sp}	[mm]	138.0	180.0	210.0	255.0	300.0	345.0	375.0
Characteristic edge distance	C _{cr, sp}	[mm]	69.0	90.0	105.0	127.5	150.0	172.5	187.5
Minimum member thickness	h _{min}	[mm]	100	120	140	170	200	230	250

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , f sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 13: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

FIXANCHOR W-FAZ/S

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{{\scriptscriptstyle Rds}}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

 $\text{3. Concrete edge failure } \qquad V_{\mathit{Rd,c}} = \ V_{\mathit{Rd,c}}^{\mathit{0}} \cdot f_{\mathit{b,V}} \cdot f_{\mathit{s,V}} \cdot f_{\mathit{c2.V}} \cdot f_{\mathit{a}} \cdot f_{\mathit{h}}$

1. Design steel shear resistance

Table 15: Design value of steel resistance $V_{\rm Rd,s}$ of a single anchor

Thread size			M8	M10	M12	M16	M20	M24	M27
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Design steel resistance	V _{Rd,s}	[kN]	9.8	16.1	24.0	44.0	51.9	91.2	135.5

2. Concrete pry-out resistance

 $V_{Rd,c} = k_8 \cdot N_{Rd,c}$

Table 16: factor $k_{\rm g}$ for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24	M27
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Concrete pry-out resistance factor	k ₈	[-]	2.4	2.4	2.4	2.4	2.8	2.8	2.8

3. Concrete edge resistance

$$V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{s,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{h}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V_{Rd,c}^{0}$ in case of concrete edge failure

Thread size	N	18	M	10	M	12	M	16	M	20	M	24	M	27
h _{ef} [mm]	4	6	6	0	7	O O	8	35	10	00	1	15	12	25
Edge distance c ₁							V	/0 Rd,c						
[mm]								kN]						
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
40	-	2.1	-	-	-	-	-	-	-	-	-	-	-	-
45	-	2.5	-	2.7	-	-	-	-	-	-	-	-	-	-
50	4.0	2.9	4.4	3.1	-	-	-	-	-	-	-	-	-	-
55	4.6	3.2	5.0	3.5	-	-	-	-	-	-	-	-	-	-
60	5.2	3.7	5.6	3.9	-	4.2	-	4.6	-	-	-	-	-	-
65	5.7	4.1	6.2	4.4	-	4.7	-	5.1	-	-	-	-	-	-
70	6.4	4.5	6.8	4.8	-	5.1	-	5.6	-	-	-	-	-	-
75	7.0	4.9	7.5	5.3	7.9	5.6	-	6.1	-	-	-	-	-	-
80	7.6	5.4	8.2	5.8	8.6	6.1	9.4	6.7	-	-	-	-	-	-
85	8.3	5.9	8.9	6.3	9.4	6.6	10.2	7.2	-	-	-	-	-	-
90	9.0	6.4	9.6	6.8	10.1	7.2	11.0	7.8	-	-	-	-	-	-
95	9.7	6.8	10.3	7.3	10.9	7.7	11.8	8.3	-	8.9	-	-	-	-
100	10.4	7.4	11.1	7.8	11.6	8.2	12.6	8.9	-	9.5	14.4	10.2	-	-
110	11.8	8.4	12.6	8.9	13.2	9.4	14.2	10.1	-	10.8	16.2	11.5	-	-
120	13.4	9.5	14.2	10.1	14.9	10.5	16.0	11.3	-	12.1	18.1	12.8	-	-
130	14.9	10.6	15.8	11.2	16.6	11.7	1 <i>7</i> .8	12.6	18.9	13.4	20.1	14.2	-	-
140	16.6	11.7	17.5	12.4	18.3	13.0	19.6	13.9	20.9	14.8	22.1	15.6	-	-
150	18.3	12.9	19.3	13.7	20.1	14.3	21.5	15.2	22.8	16.2	24.1	1 <i>7</i> .1	-	-
160	20.0	14.2	21.1	14.9	22.0	15.6	23.5	16.6	24.9	17.6	26.2	18.6	-	-
170	21.8	15.4	22.9	16.2	23.9	16.9	25.5	18.0	26.9	19.1	28.4	20.1	-	-
180	23.6	16.7	24.8	17.6	25.8	18.3	27.5	19.5	29.1	20.6	30.6	21.7	31.6	22.4
190	25.4	18.0	26.8	19.0	27.8	19.7	29.6	20.9	31.2	22.1	32.8	23.3	33.9	24.0
200	27.3	19.4	28.7	20.4	29.9	21.2	31.7	22.5	33.4	23.7	35.1	24.9	36.3	25.7
250	37.5	26.5	39.3	27.8	40.7	28.8	43.0	30.4	45.1	32.0	47.2	33.4	48.7	34.5
300	48.6	34.4	50.7	35.9	52.4	37.1	55.2	39.1	57.8	40.9	60.3	42.7	62.0	43.9
350	60.5	42.8	63.0	44.6	65.0	46.0	68.3	48.4	71.3	50.5	74.2	52.6	76.2	54.0
400	73.2	51.8	<i>7</i> 6.1	53.9	78.4	55.5	82.1	58.2	85.6	60.7	88.9	63.0	91.2	64.6
450	86.6	61.4	90.0	63.7	92.6	65.6	96.8	68.6	100.7	71.3	104.4	74.0	107.0	75.8
500	-	-	104.5	74.0	107.4	76.1	112.1	79.4	116.5	82.5	120.7	85.5	123.5	87.5
550	-	-	119.7	84.8	122.9	87.1	128.1	90.8	133.0	94.2	137.5	97.4	140.7	99.6
600	-	-	135.5	96.0	139.0	98.5	144.8	102.5	150.1	106.3	155.1	109.8	158.5	112.3

FIXANCHOR W-FAZ/S

Thread size	N	18	M	10	М	12	М	16	M	20	M	24	M	27
h _{ef} [mm]	4	6	6	0	7	0		5	10	00	1.	15	12	25
Edge distance c							V	rO Rd,c						
[mm]								:N]						
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
650	-	-	-	-	155.8	110.3	162.0	114.8	167.8	118.8	173.2	122.7	176.9	125.3
700	-	-	-	-	1 <i>7</i> 3.1	122.6	179.8	127.4	186.1	131.8	192.0	136.0	195.9	138.8
750	-	-	-	-	-	-	198.2	140.4	204.9	145.2	211.3	149.6	215.5	152.7
800	-	-	-	-	-	-	217.1	153.8	224.3	158.9	231.1	163.7	235.7	166.9
850	-	-	-	-	-	-	236.6	167.6	244.3	173.0	251.5	178.1	256.4	181.6
900	-	-	-	-	-	-	256.6	181. <i>7</i>	264.7	187.5	272.4	192.9	277.5	196.6
950	-	-	-	-	-	-	277.0	196.2	285.7	202.3	293.8	208.1	299.2	212.0
1000	-	-	-	-	-	-	-	-	307.1	217.5	315.6	223.6	321.4	227.7
1100	-	-	-	-	-	-	-	-	351.3	248.8	360.8	255.6	367.2	260.1
1200	-	-	-	-	-	-	-	-	397.3	281.4	407.7	288.8	414.7	293.8
1300	-	-	-	-	-	-	-	-	-	-	456.4	323.3	464.0	328.7
1400	-	-	-	-	-	-	-	-	-	-	506.7	358.9	515.0	364.8
1500	-	-	-	-	-	-	-	-	-	-	-	-	567.5	402.0
1600	-	-	-	-	-	-	-	-	-	-	-	-	621.6	440.3

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f_{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

 $^{^{\}rm 2)}\,\rm strength$ at 28 days of 150 mm cubes

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

		'															
s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of edge distance

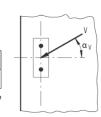
In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3} \frac{c_2}{c_1}\right) \left(0.7 + 0.3 \frac{c_2}{1.5 c_1}\right)$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c_1 \le c_2$


d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^\circ$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

FIXANCHOR W-FAZ/S

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

						0									
h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	≥ 1.50
f	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 $N_{_{Ed}}$ = Design value of tension load acting on a fastener

 $V_{_{\rm Ed}}$ = Design value of a shear load acting on a fastener

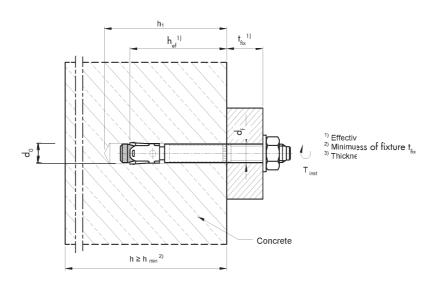
	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$\left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1$ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

¹⁾ This verification is not required in case of shear load with lever arm

Mechanical characteristics

Thread size			M8	M10	M12	M16	M20	M24	M27			
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125			
Governing cross section												
Stressed cross section	A _s	[mm ²]	21.2	36.3	52.8	91.6	153.9	156.7	244.8			
Section modulus	W	[mm ³]	13.8	30.9	54.1	123.7	269.4	276.7	540.2			
Yield strength	f _y	[N/mm ²]	580	580	580	520	420	640	640			
Tensile strength	f	[N/mm ²]	740	740	740	650	560	800	800			
Stressed cross section	n of th	readed p	art									
Stressed cross section	A _s	[mm ²]	36.6	58.0	84.3	156.7	244.8	352.5	459.0			
Section modulus	W	[mm ³]	31.2	62.3	109.2	276.7	540.2	933.5	1387.0			
Yield strength	f _y	[N/mm ²]	504	504	504	504	420	640	640			
Tensile strength	f	[N/mm ²]	630	630	630	630	560	800	800			
Design bending moment	M ⁰ _{Rd,s}	[Nm]	18.4	37.6	65.6	167.2	272.9	718.4	1065			

Material specifications


Burdent de mintier	Steel, zinc	plated		
Product description	galvanized ≥ 5 μm	sherardized ≥ 40 µm		
Conical bolt	M8 to M20: Cold formed or machined steel, galvanized, cone plastic coated	M8 to M20: Cold formed or machined steel, sherardized, cone plastic coated		
Threaded bolt	M24 and M27:	M24 and M27: steel, sherardized		
Threaded cone	Steel, galvanized	M24 and M27: Steel, galvanized		
Expansion sleeve	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel acc. to EN 10139:1997	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel acc. to EN 10139:1997		
Washer Filling washer	Steel, galvanized	Steel, zinc plated		
Hexagon nut	Steel, galvanized, coated	Steel, zinc plated		

FIXANCHOR W-FAZ/S

Installation parameters

Thread size			M8	M10	M12	M16	M20	M24	M27
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Depth of drill hole	h₁ ≥	[mm]	60	75	90	110	125	145	160
Nominal drill hole diameter	d _o	[mm]	8	10	12	16	20	24	28
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	9	12	14	18	22	26	30
Torque moment	T _{inst} ≤	[Nm]	20	25	45	90	160	200	300
Standard thickness of member	h _{min}	[mm]	100	120	140	170	200	230	250
Non-cracked concrete									
	S _{min}	[mm]	40	45	60	65	90	100	125
Minimum spacing	for c ≥	[mm]	80	70	120	120	180	180	300
A40.0	C _{min}	[mm]	50	50	75	80	130	100	180
Minimum edge distance	for s ≥	[mm]	100	100	150	150	240	220	540
Cracked concrete									
	S _{min}	[mm]	40	45	60	60	95	100	125
Minimum spacing	for c ≥	[mm]	70	70	100	100	150	180	300
AAC 1 DO	C _{min}	[mm]	40	45	60	60	95	100	180
Minimum edge distance	for s ≥	[mm]	80	90	140	180	200	220	540

Installation instructions

A) Bore hole drilling		
	la.	Hammer drilling (HD)
		Drill the hole with a hammer drill. Drill bit diameter and its working length are determined by the diameter and depth of the drill hole of the selected anchor. (see table anchor characteristics). Positioning of drill holes without damaging the reinforcement.
B) Bore hole cleaning		
	2.	Clean the bore hole from the bottom until the return air stream is without dust.
C) Setting the anchor		
	За.	Drive the anchor with some hammer impacts or with the machine setting tool into the drill hole. Anchor installation ensuring the specified embedment depth.
	3b.	Application of the required torque moment using a calibrated torque wrench.

Stainless steel - A4 (AISI 316): M8-M24

High Corrosion Resistant Steel - HCR (AISI 316): M8-M24

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, natural stone with dense structure

Type of installation		
Pre-positioned	In-place	Stand-off
-	✓	_

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DIBt, Berlin	EAD 330232-01-0601	ETA-99/0011/2018-10-02
ICC-ES Evaluation Report	ICC	AC 193	ESR-2461 /2012-09-01
Fire resistance	DIBt, Berlin	TR 020	ETA-99/0011/2018-10-12
Sprinkler systems	VdS	VdS CEA 4001:2010-11 (04)	27.03.12
Evaluation Report high strength concrete C80/95	Ing. Büro Thiele, Pirmasens	EAD 330232-01-0601 /ETAG 001	21742_2 /2017-08-10
Shock test. Critical infra- structure protection	BABS, CH-Bern		BZS D 09-0604 /2010-05-18

Basic loading data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, f_{ck} = 20 N/mm²
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

Mean ultimate resistance

Thread size				M8	M10	M12	M16	M20	M24		
Effective anchorage depth		h _{ef}	[mm]	46	60	<i>7</i> 0	85	100	125		
Non-cracked concrete											
Tension	C20/25	N _{Ru,m}	[kN]	14.2	22.0	30.7	43.8	56.4	105.3		
Shear	C20/25	V _{Ru,m}	[kN]	16.3	25.5	40.8	60.5	108.4	149.5		
Cracked concrete											
Tension	C20/25	N _{Ru,m}	[kN]	9.9	15.3	25.1	36.6	49.6	62.8		
Shear	C20/25	V _{Ru,m}	[kN]	16.3	25.5	40.7	60.4	108.4	149.5		

Characteristic resistance

Thread size				M8	M10	M12	M16	M20	M24		
Effective anchorage depth		h _{ef}	[mm]	46	60	70	85	100	125		
Non-cracked concrete											
т .	C20/25	,	[kN]	12.0	16.0	25.0	35.0	49.2	68.8		
Tension	C50/60	N _{Rk}	[KIN]	16.0	25.3	39.5	55.3	77.8	108.7		
Cl	C20/25	.,	[[]]	13.0	20.0	30.0	55.0	86.0	123.6		
Shear	C50/60	V_{Rk}	[kN]	13.0	20.0	30.0	55.0	86.0	123.6		
Cracked concrete											
T .	C20/25		[[]]	12.0	16.0	25.0	35.0	49.2	68.8		
Tension	C50/60	N _{Rk}	[kN]	16.0	25.3	39.5	55.3	77.8	108.7		
Cl	C20/25		13.0	20.0	30.0	55.0	86.0	123.6			
Shear	C50/60	V_{Rk}	[kN]	13.0	20.0	30.0	55.0	86.0	123.6		

Design resistance

Thread size				M8	M10	M12	M16	M20	M24		
Effective anchorage depth		h _{ef}	[mm]	46	60	70	85	100	125		
Non-cracked concrete											
т .	C20/25	N.	[LNI]	8.0	10.7	16.7	23.3	32.8	45.8		
Tension	C50/60	N _{Rd}	[kN]	10.7	16.9	26.4	36.9	51.9	72.5		
cl	C20/25	.,	[kN]	10.4	16.0	24.0	44.0	61.4	98.9		
Shear	C50/60	V_{Rd}		10.4	16.0	24.0	44.0	61.4	98.9		
Cracked concrete											
т .	C20/25	N.	[LVI]	3.3	6.0	10.7	16.7	23.0	26.7		
Tension	C50/60	N _{Rd}	[kN]	5.3	9.5	16.9	26.4	36.3	42.2		
Shear	C20/25	\	[LNI]	10.4	16.0	24.0	43.2	61.4	89.8		
Snear	C50/60	V _{Rd}	[kN]	10.4	16.0	24.0	44.0	61.4	98.9		

Recommended/allowable loads 1)

Thread size				M8	M10	M12	M16	M20	M24		
Effective anchorage depth		h _{ef}	[mm]	46	60	70	85	100	125		
Non-cracked concrete											
Tanaian	C20/25	N.	[kN]	5.7	7.6	11.9	16.7	23.4	32.7		
Tension	C50/60	N _{rec}		7.6	12.0	18.8	26.4	37.0	51.8		
Shear	C20/25	\ \ \	[kN]	7.4	11.4	1 <i>7</i> .1	31.4	43.9	70.6		
Snear	C50/60	V _{rec}		7.4	11.4	1 <i>7</i> .1	31.4	43.9	<i>7</i> 0.6		
Cracked concrete											
Tension	C20/25	N	[kN]	2.4	4.3	7.6	11.9	16.4	19.0		
Tension	C50/60	N _{rec}	[KIN]	2.4 4.3 7.6 11.9 16.4 19.0 3.8 6.8 12.0 18.8 25.9 30.1 7.4 11.4 17.1 30.8 43.9 64.2							
Shear	C20/25	\/	[kN]	7.4	11.4	17.1	30.8	43.9	64.2		
Snear	C50/60	V _{rec}	[KIN]	7.4	11.4	1 <i>7</i> .1	31.4	43.9	70.6		

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{L}}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- · Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} \cdot f_{Rd,sp} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile tesistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Design steel resistance	N _{Rd,s}	[kN]	10. <i>7</i>	18.0	26.7	42.7	64.3	73.3

2. Design pullout resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$$

Table 2: Basic design resistance No. in case of pull-out failure of a single anchor

Table 2. basic design resistance in Rd.p in C	use or p		unore or	u sirigie ui	iciioi			
Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Non-cracked concrete								
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	8.0	10.7	16.7	23.3	32.8	45.8
Cracked concrete								
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	3.3	6.0	10.7	16.7	23.0	26.7

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance $N_{\rm Rdc}^{\rm o}$ in case of concrete cone failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Non-cracked concrete								
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	10.2	15.2	19.2	25.7	32.8	45.8
Cracked concrete								
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	7.2	10.7	13.4	18.0	23.0	32.1

Table 5: Characteristic edge distance $c_{\scriptscriptstyle cr.N}$ and spacing $s_{\scriptscriptstyle cr.N}$

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Characteristic spacing	S _{cr, N}	[mm]	138.0	180.0	210.0	255.0	300.0	375.0
Characteristic edge distance	C _{cr, N}	[mm]	69.0	90.0	105.0	127.5	150.0	187.5

²⁾ strength at 28 days of 150 mm cubes

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f_{sx}, f_{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 8: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

 $N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \le 0.3$ mm

Table 9: Design resistance N_{Rdsp}^0 in case of concrete splitting failure of a single anchor

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	<i>7</i> 0	85	100	125
Non-cracked concrete								
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	8.0	10.7	16.7	23.3	33.7	47.1

Table 10: Characteristic edge distance c and spacing s

C/.5	р .	- cr.sp						
Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Characteristic spacing	S _{cr, sp}	[mm]	230.0	250.0	280.0	400.0	440.0	500.0
Characteristic edge distance	C _{cr, sp}	[mm]	115.0	125.0	140.0	200.0	220.0	250.0
Minimum member thickness	h _{min}	[mm]	100	120	140	160	200	250

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , f sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacing s. when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 13: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{{\scriptscriptstyle Rds}}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

 $\text{3. Concrete edge failure } \qquad V_{\mathit{Rd,c}} = \ V_{\mathit{Rd,c}}^{\mathit{0}} \cdot f_{\mathit{b,V}} \cdot f_{\mathit{s,V}} \cdot f_{\mathit{c2,V}} \cdot f_{\mathit{a}} \cdot f_{\mathit{h}}$

1. Design steel shear resistance

Table 15: Design value of steel resistance V_{Rds} of a single anchor

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	<i>7</i> 0	85	100	125
Design steel resistance	V _{Rd,s}	[kN]	10.4	16.0	24.0	44.0	61.4	98.9

2. Concrete pry-out resistance

 $V_{Rd,c} = k_8 \cdot N_{Rd,c}$

Table 16: factor k_s for calculating design pry-out resistance

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Concrete pry-out resistance factor	k _s	[-]	2.4	2.4	2.4	2.4	2.8	2.8

3. Concrete edge resistance

$$V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{s,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{h}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V_{Rd,c}^0$ in case of concrete edge failure

Thread size	N	18	M	10	M	12	M	16	M	20	M:	25
h _{ef} [mm]	4	.6	6	0	7	0	8	5	10	00	12	25
Edge distance c						V	0 Rd,c					
[mm]							:N]					
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
40	-	2.1	-	-	-	-	-	-	-	-	-	-
45	-	2.5	-	2.7	-	-	-	-	-	-	-	-
50	4.0	2.9	4.4	3.1	-	-	-	-	-	-	-	-
55	4.6	3.2	5.0	3.5	-	-	-	-	-	-	-	-
60	5.2	3.7	5.6	3.9	-	4.2	-	4.6	-	-	-	-
65	5.7	4.1	6.2	4.4	-	4.7	-	5.1	-	-	-	-
70	6.4	4.5	6.8	4.8	-	5.1	-	5.6	-	-	-	-
75	7.0	4.9	7.5	5.3	7.9	5.6	-	6.1	-	-	-	-
80	7.6	5.4	8.2	5.8	8.6	6.1	9.4	6.7	-	-	-	-
85	8.3	5.9	8.9	6.3	9.4	6.6	10.2	7.2	-	-	-	-
90	9.0	6.4	9.6	6.8	10.1	7.2	11.0	7.8	-	-	-	-
95	9.7	6.8	10.3	7.3	10.9	7.7	11.8	8.3	-	8.9	-	-
100	10.4	7.4	11.1	7.8	11.6	8.2	12.6	8.9	-	9.5	14.7	10.4
110	11.8	8.4	12.6	8.9	13.2	9.4	14.2	10.1	-	10.8	16.5	11 <i>.7</i>
120	13.4	9.5	14.2	10.1	14.9	10.5	16.0	11.3	-	12.1	18.5	13.1
130	14.9	10.6	15.8	11.2	16.6	11. <i>7</i>	1 <i>7</i> .8	12.6	18.9	13.4	20.4	14.5
140	16.6	11.7	17.5	12.4	18.3	13.0	19.6	13.9	20.9	14.8	22.5	15.9
150	18.3	12.9	19.3	13.7	20.1	14.3	21.5	15.2	22.8	16.2	24.6	17.4
160	20.0	14.2	21.1	14.9	22.0	15.6	23.5	16.6	24.9	1 <i>7</i> .6	26.7	18.9
170	21.8	15.4	22.9	16.2	23.9	16.9	25.5	18.0	26.9	19.1	28.9	20.4
180	23.6	16.7	24.8	17.6	25.8	18.3	27.5	19.5	29.1	20.6	31.1	22.0
190	25.4	18.0	26.8	19.0	27.8	19. <i>7</i>	29.6	20.9	31.2	22.1	33.4	23.6
200	27.3	19.4	28.7	20.4	29.9	21.2	31.7	22.5	33.4	23.7	35. <i>7</i>	25.3
250	37.5	26.5	39.3	27.8	40.7	28.8	43.0	30.4	45.1	32.0	47.9	33.9
300	48.6	34.4	50.7	35.9	52.4	3 <i>7</i> .1	55.2	39.1	57.8	40.9	61.1	43.3
350	60.5	42.8	63.0	44.6	65.0	46.0	68.3	48.4	71.3	50.5	75.1	53.2
400	73.2	51.8	76.1	53.9	78.4	55.5	82.1	58.2	85.6	60.7	90.0	63.8
450	86.6	61.4	90.0	63.7	92.6	65.6	96.8	68.6	100.7	71.3	105.7	74.8
500	-	-	104.5	74.0	107.4	<i>7</i> 6.1	112.1	79.4	116.5	82.5	122.0	86.4
550	-	-	119.7	84.8	122.9	87.1	128.1	90.8	133.0	94.2	139.0	98.5
600	-	-	135.5	96.0	139.0	98.5	144.8	102.5	150.1	106.3	156.7	111.0

Thread size	M	18	M	10	М	12	M	16	M	20	M	25
h _{ef} [mm]	4	6	6	0	7	0	8	5	10	00	12	25
Edge distance c ₁						V	0 Rd,c					
[mm]							:N]					
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
650	-	-	-	-	155,8	110,3	162,0	114,8	167,8	118,8	175,0	123,9
700	-	-	-	-	173,1	122,6	179,8	127,4	186,1	131,8	193,8	137,3
750	-	-	-	-	-	-	198,2	140,4	204,9	145,2	213,3	151,1
800	-	-	-	-	-	-	217,1	153,8	224,3	158,9	233,2	165,2
850	-	-	-	-	-	-	236,6	167,6	244,3	173,0	253,8	179,8
900	-	-	-	-	-	-	256,6	181 <i>,7</i>	264,7	187,5	274,8	194,6
950	-	-	-	-	-	-	277,0	196,2	285,7	202,3	296,3	209,9
1000	-	-	-	-	-	-	-	-	307,1	217,5	318,3	225,5
1100	-	-	-	-	-	-	-	-	351,3	248,8	363,8	257,7
1200	-	-	-	-	-	-	-	-	397,3	281,4	411,0	291,1
1300	-	-	-	-	-	-	-	-	-	-	460,0	325,8
1400	-	-	-	-	-	-	-	-	-	-	510,6	361,6
1500	-	-	-	-	-	-	-	-	-	-	567.5	402.0
1600	-	-	-	-	-	-	-	-	-	-	621.6	440.3

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1. <i>7</i> 3	1.80	1.87	1.93	1.8 <i>7</i>	1.93

¹⁾ Always choose the lowest value of the spacing s. when there are different spacing in the row closest to the edge.

c. Influence of edge distance

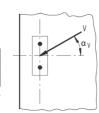
In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3} \frac{c_2}{c_1}\right) \left(0.7 + 0.3 \frac{c_2}{1.5 c_1}\right)$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c_1 \le c_2$


d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹¹ For $a \ge 90^\circ$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	≥ 1.50
f _{h.V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 $N_{_{Ed}}$ = Design value of tension load acting on a fastener

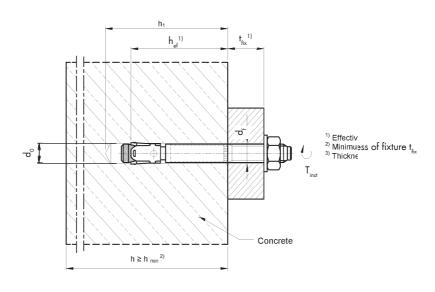
V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$\left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1$ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

Mechanical characteristics

Thread size			M8	M10	M12	M16	M20	M24	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Governing cross sect	ion								
Stressed cross section	A _s	[mm ²]	21.2	36.3	52.8	91.6	153.9	156.7	156.7
Section modulus	W	[mm ³]	13.8	30.9	54.1	123.7	269.4	276.7	276.7
Yield strength	f	[N/mm ²]	600	600	600	560	500	560	560
Tensile strength	f	[N/mm ²]	750	750	750	700	700	700	700
Stressed cross section	n of th	readed p	art						
Stressed cross section	A _s	[mm ²]	36.6	58.0	84.3	156.7	244.8	352.5	352.5
Section modulus	W	[mm ³]	31.2	62.3	109.2	276.7	540.2	933.5	933.5
Yield strength	f _y	[N/mm ²]	560	560	560	480	500	560	560
Tensile strength	f	[N/mm ²]	700	700	700	600	700	700	700
Design bending moment	M ⁰ _{Rd,s}	[Nm]	20.8	41.6	73.6	186.4	324.3	628.3	628.23


Material specifications

	W-FAZ/A4	W-FAZ/HCR
Part	Stainless steel A4	High corrosion resistant steel (HCR)
Conical bolt	M8 to M20: Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, cone plastic coated	M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, cone plastic coated
Threaded bolt	<u>M24:</u> Stainless steel (e.g. 1.4401,	M24: High corrosion resistant steel
Threaded cone	1.4404) EN 10088:2014	1.4529 or 1.4565 EN 10088:2014
Expansion sleeve	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014
Washer	Stainless steel (e.g. 1.4401,	High corrosion resistant steel
Filling washer	1.4571) EN 10088:2014	1.4529 or 1.4565, EN 10088:2014
Hexagon nut	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, coated

Installation parameters

Thread size			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Depth of drill hole	h₁ ≥	[mm]	60	75	90	110	125	155
Nominal drill hole diameter	d _o	[mm]	8	10	12	16	20	24
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8.45	10.45	12.5	16.5	20.55	24.55
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	9	12	14	18	22	26
Torque moment	T _{inst} ≤	[Nm]	20	35	50	110	200	290
Standard thickness of member	h _{min}	[mm]	100	120	140	160	200	250
Non-cracked concrete								
	S _{min}	[mm]	40	50	60	65	90	125
Minimum spacing	for c ≥	[mm]	80	75	120	120	180	125
AAC . I I' .	C _{min}	[mm]	50	60	75	80	130	125
Minimum edge distance	for s ≥	[mm]	100	120	150	150	240	125
Cracked concrete								
A4:-:	S _{min}	[mm]	40	50	60	60	95	125
Minimum spacing	for c ≥	[mm]	70	75	100	100	150	125
A 4::	C _{min}	[mm]	40	55	60	60	95	125
Minimum edge distance	for s ≥	[mm]	80	90	140	180	200	125

Installation instructions

A) Bore hole drilling 1a. Hammer drilling (HD) Drill the hole with a hammer drill. Drill bit diameter and its working length are determined by the diameter and depth of the drill hole of the selected anchor. (see table anchor characteristics). Positioning of drill holes without damaging the reinforcement. 8) Bore hole cleaning 2. Clean the bore hole from the bottom until the return air stream is without dust. C) Setting the anchor 3a. Drive the anchor with some hammer impacts or with the machine setting tool into the drill hole. Anchor installation ensuring the specified embedment depth.

3b.

Application of the required torque moment using a

calibrated torque wrench.

HIGH PERFORMANCE ANCHOR W-HAZ/S

W-HAZ-B/S

Galvanized (5 microns): M6 - M20

W-HAZ-S/S

Galvanized (5 microns): M6 - M20

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Variable effective anchorage depths possible!

Type of installation		
Pre-positioned	In-place	Stand-off
-	✓	-

W-HAZ-SK/S

Galvanized (5 microns): M6 - M12

Applications

Approvals and certificates

- 3	×.
	: ::
• •	
::	: ::
::	

Description	Authority / laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DiBt, Berlin	EAD 330232-01-0601	ETA-02/0031 / 2021-28-01
Shock test, Critical infra- structure protection	BABS, CH-Bern		BZS D 09-0605 /2010-04-28

Basic loading data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, f_{ck} = 20 N/mm²
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

Mean ultimate resistance

Thread size					10/M6	12/M8	15/M10	18/M12	24/M16	24/16L	28/M20	32/M24
Effective and	norage depth		h _{ef}	[mm]	50	60	<i>7</i> 1	80	100	115	125	150
Non-cracked concrete												
Tension	S/SK/B	C20/25	N _{Ru,m}	[kN]	16.1	27.6	39.4	49.0	71.9	90.4	84.7	139.7
Shear	S / SK	C20/25	.,	[LVI]	19.0	33.4	58.6	83.7	143.7	143.7	198.5	213.9
	В	C20/25	V _{Ru,m}	[kN]	18.0	28.3	42.0	<i>7</i> 1.3	106.0	106.0	151.4	213.9
Cracked co	oncrete											
Tension	S/SK/B	C20/25	N _{Ru,m}	[kN]	16.1	19.3	29.9	38.8	55.5	72.8	73.0	122.7
Shear	S/SK	C20/25	.,	[LVI]	19.0	33.4	58.6	83.7	143.7	143.7	198.5	213.9
	В	C20/25	V _{Ru,m}	_{i,m} [kN] -	18.0	28.3	42.0	<i>7</i> 1.3	106.0	106.0	151.4	213.9

Characteristic resistance

Thread size					10/M6	12/M8	15/M10	18/M12	24/M16	24/16L	28/M20	32/M24
Effective anch	orage depth		h _{ef}	[mm]	50	60	71	80	100	115	125	150
Non-cracke	ed concrete											
Tension	C / CV / D	C20/25	NI.	EL N II	16.0	20.0	29.4	35.2	49.2	60.7	68.8	90.4
rension	S/SK/B	C50/60	N _{Rk}	[kN]	16.0	29.0	46.0	55.7	<i>7</i> 7.8	95.9	108.7	142.9
	c / cv	C20/25			18.0	30.0	48.0	70.4	98.4	121.3	137.5	180.7
CI	S / SK	C50/60	,,	[LKI]	18.0	30.0	48.0	73.0	126.0	126.0	150.0	200.0
Shear	D	C20/25	V_{Rk}	[kN]	16.0	25.0	36.0	63.0	91.0	91.0	122.0	180.7
	В	C50/60			16.0	25.0	36.0	63.0	91.0	91.0	122.0	200.0
Cracked co	ncrete											
Tension	C / CV / D	C20/25	NI.	[LKI]	5.0	12.0	16.0	24.6	34.4	42.5	48.1	63.3
rension	S/SK/B	C50/60	N _{Rk}	[kN]	7.9	19.0	25.3	39.0	54.4	67.1	76.1	100.0
	c / cv	C20/25			18.0	30.0	41.2	49.3	68.9	84.9	96.3	126.5
CI	S / SK	C50/60		[LKI]	18.0	30.0	48.0	73.0	108.9	126.0	150.0	200.0
Shear B	C20/25	V _{Rk}	[kN]	16.0	25.0	36.0	49.3	68.9	84.9	96.3	126.5	
	В	C50/60			16.0	25.0	36.0	63.0	91.0	91.0	122.0	200.0

HIGH PERFORMANCE ANCHOR W-HAZ/S

Design resistance

Thread size					10/M6	12/M8	15/M10	18/M12	24/M16	24/16L	28/M20	32/M24
Effective and	norage depth		h _{ef}	[mm]	50	60	71	80	100	115	125	150
Non-crack	ed concrete											
T:-	S/SK/B	C20/25	N.	[kN]	10.7	13.3	19.6	23.5	32.8	40.4	45.8	60.2
Tension	3/3K/B	C50/60	N _{Rd}	[KIN]	10.7	19.3	30.7	37.1	51.9	63.9	72.5	95.3
	C / CV	C20/25			14.4	24.0	38.4	46.9	65.6	80.9	91.7	120.5
Shear	S/SK	C50/60	,,	[[K I]	14.4	24.0	38.4	58.4	100.8	100.8	120.0	160.0
Snear	В	C20/25	V _{Rd}	[kN]	12.8	20.0	28.8	46.9	65.6	72.8	91.7	120.5
	В	C50/60			12.8	20.0	28.8	50.4	72.8	72.8	97.6	160.0
Cracked co	ncrete											
т .	C / CK / D	C20/25		[[K]]	3.3	8.0	10.7	16.4	23.0	28.3	32.1	42.2
Tension	S/SK/B	C50/60	N _{Rd}	[kN]	5.3	12.6	16.9	26.0	36.3	44.8	50.7	66.7
	C / CV	C20/25			14.4	21.3	27.5	32.9	45.9	56.6	64.2	84.3
CL	S / SK	C50/60	,,	יואוז	14.4	24.0	38.4	51.9	72.6	89.5	101.5	133.4
Shear B	C20/25	V _{Rd}	V _{Rd} [kN]	12.8	20.0	27.5	32.9	45.9	56.6	64.2	84.3	
	D	C50/60			12.8	20.0	28.8	50.4	72.6	72.8	97.6	133.4

Recommended/allowable Loads 1)

Thread size					10/M6	12/M8	15/M10	18/M12	24/M16	24/16L	28/M20	32/M24
Effective and	norage depth		h _{ef}	[mm]	50	60	71	80	100	115	125	150
Non-crack	ed concrete											
Tension	S/SK/B	C20/25	NI.	[kN]	7.6	9.5	14.0	16.8	23.4	28.9	32.7	43.0
rension	3/3K/B	C50/60	N _{rec}	[KIN]	7.6	13.8	21.9	26.5	37.0	45.7	51.8	68.0
	C / CV	C20/25			10.3	1 <i>7</i> .1	27.4	33.5	46.9	57.8	65.5	86.1
Shear	S / SK	C50/60	V	[LA.I]	10.3	1 <i>7</i> .1	27.4	41.7	72.0	72.0	85.7	114.3
Snear	D	C20/25	rec	[kN]	9.1	14.3	20.6	33.5	46.9	52.0	65.5	86.1
	В	C50/60			9.1	14.3	20.6	36.0	52.0	52.0	69.7	114.3
Cracked co	ncrete											
т .	C / CK / D	C20/25	N.	[kN]	2.4	5.7	7.6	11.7	16.4	20.2	22.9	30.1
Tension	S/SK/B	C50/60	N _{rec}	[KIN]	3.8	9.0	12.0	18.6	25.9	32.0	36.2	47.6
	C / CV	C20/25			10.3	15.2	19.6	23.5	32.8	40.4	45.8	60.2
CI	S/SK	C50/60	.,	[LVI]	10.3	1 <i>7</i> .1	27.4	37.1	51.9	63.9	72.5	95.3
Shear	D	C20/25	V _{rec}	[kN]	9.1	14.3	19.6	23.5	32.8	40.4	45.8	60.2
	В	C50/60			9.1	14.3	20.6	36.0	51.9	52.0	69.7	95.3

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{1}}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- · Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table
- Tables calculated for standard effective anchorage depths. Larger effective anchorage depths possible

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} \cdot f_{Rd,sp} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{pd}, of a single anchor

Thread size			10/M6	12/M8	15/	18/	24/	24/16L	28/	32/
			10/1110	12,1110	M10	M12	M16	2-1, 101	M20	M24
Effective anchorage depth	h_{ef}	[mm]	50	60	71	80	100	115	125	150
Design steel resistance	N _{Rd,s}	[kN]	10.7	19.3	30.7	44.7	84.0	84.0	130.7	188.0

2. Design pullout resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$$

Table 2: Basic design resistance N_{Rd}^0 in case of pull-out failure of a single anchor

Kd,p										
Thread size			10/M6	12/M8	15/M10	18/M12	24/M16	24/16L	28/M20	32/M24
Effective anchorage depth	h _{ef}	[mm]	50	60	<i>7</i> 1	80	100	115	125	150
Non-cracked concrete										
Design pull-out resistance	$N_{Rd,p}^0$	[kN]	11.3	13.3	20.0	24.0	33.3	40.4	46.7	60.2
Cracked concrete										
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	3.3	8.0	10.7	16.7	24.0	29.3	33.3	43.3

HIGH PERFORMANCE ANCHOR W-HAZ/S

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance $N_{Rd,c}^{\circ}$ in case of concrete cone failure of a single anchor

Thread size			10/M6	12/M8	15/M10	18/M12	24/M16	24/16L	28/M20	32/M24
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Non-cracked concrete										
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	11.6	15.2	19.6	23.5	32.8	40.4	45.8	60.2
Cracked concrete										
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	8.1	10.7	13. <i>7</i>	16.4	23.0	28.3	32.1	42.2

Table 5: Characteristic edge distance $c_{\scriptscriptstyle cr,N}$ and spacing $s_{\scriptscriptstyle cr,N}$

Thread size			10/M6	12/M8	15/M10	18/M12	24/M16	24/16L	28/M20	32/M24
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Characteristic spacing	S _{cr, N}	[mm]	150	180	213	240	300	345	375	450
Characteristic edge distance	C _{cr, N}	[mm]	75	90	107	120	150	1 <i>7</i> 3	188	225

²⁾ strength at 28 days of 150 mm cubes

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders 1)	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} , f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 8: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

HIGH PERFORMANCE ANCHOR W-HAZ/S

4. Design splitting resistance

 $N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \le 0.3$ mm

Table 9: Design resistance $N_{pd,n}^{\circ}$ in case of concrete splitting failure of a single anchor

Thread size			10/M6	12/M8	15/M10	18/M12	24/M16	24/16L	28/M20	32/M24
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Non-cracked concrete										
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	8.0	10.7	16.7	20.0	26.7	46.7	33.3	46.7

Table 10: Characteristic edge distance $c_{cr,sp}$ and spacing $s_{cr,sp}$

Thread size			10/M6	12/M8	15/M10	18/M12	24/M16	24/16L	28/M20	32/M24
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Characteristic spacing	S _{cr, sp}	[mm]	150	180	213	240	300	345	375	450
Characteristic edge distance	C _{cr, sp}	[mm]	125	150	1 <i>7</i> 8	200	250	1 <i>7</i> 3	313	300
Minimum member thickness	h _{min}	[mm]	100	120	140	160	200	230	250	300

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders 13	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1$$
 $f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$

Table 13: Influence of edge distance on splitting resistance

			0		,	0													
c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f,	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

HIGH PERFORMANCE ANCHOR W-HAZ/S

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

 $\text{3. Concrete edge failure } \qquad V_{\textit{Rd,c}} = V^{\textit{0}}_{\textit{Rd,c}} \cdot f_{\textit{b,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$

1. Design steel shear resistance

Table 15: Design value of steel resistance $V_{\rm Rd,s}$ of a single anchor

Screw size				10/M6	12/M8	15/10	18/12	24/16	24/16L	28/20	32/24
Effective anchorage depth		h _{ef}	[mm]	50	60	71	80	100	115	125	150
D :	S and SK	V _{Rd,s}	[kN]	14.4	24.0	38.4	58.4	100.8	100.8	120.0	160.0
Design steel resistance	В	V _{Rd,s}	[kN]	12.8	20.0	28.8	50.4	72.8	72.8	97.6	160.0

2. Concrete pry-out resistance

 $V_{Rd,c} = k_{g} \cdot N_{Rd,c}$

Table 16: factor $k_{\rm g}$ for calculating design pry-out resistance

Screw size	10/M6	12/M8	15/10	18/12	24/16	24/16L	28/20	32/24		
Effective anchorage depth	h _{ef}	[mm]	50	60	<i>7</i> 1	80	100	115	125	150
Concrete pry-out resistance factor	k ₈	[-]	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0

3. Concrete edge resistance

$$V_{\mathrm{Rd,c}} = V_{\mathrm{Rd,c}}^{0} \cdot f_{\mathrm{b,V}} \cdot f_{\mathrm{s,V}} \cdot f_{\mathrm{c2,V}} \cdot f_{\mathrm{a}} \cdot f_{\mathrm{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V_{Rd.c}^{o}$ in case of concrete edge failure

Thread size	10/	′M6	12/	'M8	15/	M10	18/	112	24/	M16	24/1	M16L	28/	M20	32/	M24
h _{ef} [mm]	5	0	6	0	7	1	8	0	10	00	1	15	12	25	1:	50
Edge distance								٧	'O Rd,c							
[mm]		[kN]														
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
50	4.2	3.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
55	4.8	3.4	-	3.6	-	-	-	-	-	-	-	-	-	-	-	-
60	5.4	3.8	5.7	4.1	6.2	4.4	-	-	-	-	-	-	-	-	-	-
65	6.0	4.3	6.4	4.5	6.8	4.8	-	-	-	-	-	-	-	-	-	-
70	6.6	4.7	7.0	5.0	7.5	5.3	8.0	5.6	-	-	-	-	-	-	-	-
75	7.3	5.2	7.7	5.5	8.2	5.8	8.7	6.2	-	-	-	-	-	-	-	-
80	8.0	5.6	8.4	6.0	9.0	6.3	9.5	6.7	-	-	-	-	-	-	-	-
85	8.6	6.1	9.1	6.5	9.7	6.9	10.2	7.2	-	-	-	-	-	-	-	-
90	9.3	6.6	9.8	7.0	10.5	7.4	11.0	7.8	-	-	-	-	-	-	-	-
95	10.0	7.1	10.6	7.5	11.2	8.0	11.8	8.4	-		-	-	-		-	-
100	10.8	7.6	11.3	8.0	12.0	8.5	12.6	9.0	13.9	9.8	14.4	10.2	-	-	-	-
110	12.3	8.7	12.9	9.1	13.7	9.7	14.3	10.2	15.7	11.1	16.2	11.5	-	-	-	-
120	13.8	9.8	14.5	10.3	15.3	10.9	16.1	11.4	17.6	12.4	18.1	12.8	-	-	-	-
130	15.5	11.0	16.2	11.5	1 <i>7</i> .1	12.1	17.9	12.7	19.5	13.8	20.1	14.2	-	-	-	-
140	17.1	12.1	17.9	12.7	18.9	13.4	19.7	14.0	21.4	15.2	22.1	15.6	-	-	-	-
150	18.9	13.4	19.7	13.9	20.7	14.7	21.6	15.3	23.4	16.6	24.1	17.1	-	-	26.9	19.0
160	20.6	14.6	21.5	15.2	22.6	16.0	23.6	16.7	25.5	18.1	26.2	18.6	-	-	29.1	20.6
170	22.4	15.9	23.4	16.6	24.6	17.4	25.6	18.1	27.6	19.6	28.4	20.1	-	-	31.4	22.3
180	24.3	17.2	25.3	17.9	26.5	18.8	27.6	19.6	29.8	21.1	30.6	21.7	31.8	22.5	33.8	23.9
190	26.2	18.6	27.3	19.3	28.6	20.2	29.7	21.0	32.0	22.7	32.8	23.3	34.1	24.2	36.2	25.7
200	28.2	19.9	29.3	20.7	30.7	21.7	31.9	22.6	34.2	24.3	35.1	24.9	36.5	25.8	38.7	27.4
250	38.5	27.3	39.9	28.3	41.7	29.5	43.2	30.6	46.1	32.7	47.2	33.4	48.9	34.6	51.6	36.5
300	49.8	35.3	51.5	36.5	53.6	38.0	55.4	39.2	59.0	41.8	60.3	42.7	62.3	44.1	65.4	46.4
350	61.9	43.9	64.0	45.3	66.4	47.0	68.5	48.5	72.7	51.5	74.2	52.6	76.5	54.2	80.2	56.8
400	74.9	53.0	77.2	54.7	80.0	56.7	82.5	58.4	87.2	61.8	88.9	63.0	91.6	64.9	95.8	67.8
450	88.5	62.7	91.2	64.6	94.4	66.9	97.1	68.8	102.5	72.6	104.4	74.0	107.4	76.1	112.1	79.4
500	102.9	72.9	105.9	75.0	109.5	77.5	112.5	79.7	118.5	83.9	120.7	85.5	124.0	87.8	129.2	91.5
550	117.9	83.5	121.2	85.9	125.2	88.7	128.6	91.1	135.2	95.8	137.5	97.4	141.2	100.0	146.9	104.0
600	133.5	94.6	137.2	97.2	141.5	100.2	145.2	102.9	152.5	108.0	155.1	109.8	159.0	112.7	165.3	117.1

HIGH PERFORMANCE ANCHOR W-HAZ/S

Thread size	10/	10/M6 12/M8		15/	M10	18/	M12	24/M16		24/M16L		28/M20		32/M24		
h _{ef} [mm]	5	0	6	0	7	1	8	0		00		115		125		50
Edge distance		$V_{\rm Rd,c}^{ m o}$														
[mm]		[kN]														
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
650	-	-	153.8	108.9	158.5	112.3	162.5	115.1	170.4	120.7	173.2	122.7	177.5	125.7	184.3	130.5
700	-	-	170.9	121.0	176.0	124.7	180.4	127.8	188.9	133.8	192.0	136.0	196.6	139.3	203.9	144.4
750	-	-	-	-	194.1	137.5	198.8	140.8	208.0	147.3	211.3	149.6	216.2	153.2	224.0	158.7
800	-	-	-	-	212.8	150.7	217.8	154.3	227.6	161.2	231.1	163.7	236.4	167.5	244.8	173.4
850	-	-	-	-	231.9	164.3	237.3	168.1	247.8	175.5	251.5	178.1	257.2	182.2	266.0	188.4
900	-	-	-	-	251.6	178.2	257.3	182.3	268.5	190.2	272.4	192.9	278.4	197.2	287.8	203.9
950	-	-	-	-	-	-	277.8	196.8	289.6	205.2	293.8	208.1	300.2	212.6	310.1	219.6
1000	-	-	-	-	-	-	298.8	211.6	311.3	220.5	315.6	223.6	322.4	228.4	332.9	235.8
1100		-	-	-		-	-		356.0	252.1	360.8	255.6	368.2	260.8	379.8	269.0
1200	-	-	-	-	-	-	-	-	402.4	285.1	407.7	288.8	415.9	294.6	428.6	303.6
1300	-	-	-	-	-	-	-	-	450.6	319.2	456.4	323.3	465.3	329.6	479.1	339.4
1400	-	-	-	-	-	-	-	-	500.5	354.5	506.7	358.9	516.4	365.8	531.3	376.3
1500		-	-	-		-	-		-	-	-		569.0	403.1	585.0	414.4
1600	-	-	-	-	-	-	-	-	-	-	-	-	623.2	441.4	640.3	453.6
1700	-	-	-	-	-	-	-	-	-	-	-	-	-	-	697.2	493.8
1800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	755.4	535.1
1900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	815.1	577.4

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

		,															
s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of edge distance

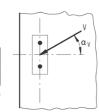
In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3} \frac{c_2}{c_1}\right) \left(0.7 + 0.3 \frac{c_2}{1.5 c_1}\right)$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

¹⁾ Distance to the second edge: $c_1 \le c_2$


d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^\circ$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

HIGH PERFORMANCE ANCHOR W-HAZ/S

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	≥ 1.50
f _{h.V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Fd} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$\left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1$ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

¹⁾ This verification is not required in case of shear load with lever arm

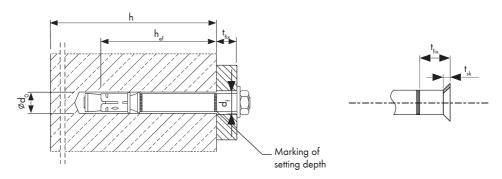
Mechanical characteristics

Thread size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Governing cross se	ction (bolt and	screw)							
Stressed cross section	A _s	[mm ²]	20.1	36.6	58	84.3	157	157	244.8	352.5
Section modulus	W	[mm ³]	12.7	31.2	62.3	109	277	277	541	935
Yield strength	f	[N/mm ²]	640	640	640	640	640	640	640	640
Tensile strength	f	[N/mm²]	800	800	800	800	800	800	800	800
Design bending moment	M ^o _{Rd,s}	[Nm]	9.6	24	48	84	212.8	212.8	415.2	718.4

^{*}For larger effective anchorage depths, design bending moments are higher

Material specifications

B 1 . 1	Steel, zinc plated
Product description	galvanized ≥ 5 µm
Threaded bolt	Steel, Strength class 8.8, EN ISO 898-1:2013
Washer	Steel, EN 10139:2016
Washer	Steel, galvanized
Hexagon nut	Steel, galvanized, coated
Distance sleeve	Steel tube EN 10305-2:2016
Ring	Polyethylene
Expansion sleeve	Steel, EN 10139:2016
Threaded cone	Steel EN 10083-2:2006
Hexagon nut	Steel, Strength class 8, EN ISO 898-2:2012
Hexagon head screw	Steel, Strength class 8.8, EN ISO 898-2:2013
Countersunk screw	Steel, Strength class 8.8, EN ISO 898-1:2013
Countersunk washer	Steel, EN 10083-2:2006



HIGH PERFORMANCE ANCHOR W-HAZ/S

Installation parameters

Thread size			10/M6	12/M8	15/10	18/12	24/16	24/16 L	28/20	32/24
Minimum effective anchorage	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Nominal drill hole diameter	d _o	[mm]	10	12	15	18	24	24	28	32
Cutting diameter of drill bit	d _{cut} ≤	[mm]	10.45	12.5	15.5	18.5	24.55	24.55	28.55	32.7
Depth of drill hole	h₁ ≥	[mm]	h _{ef} + 15	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30	h _{ef} + 30	h _{ef} + 35	h _{ef} + 30
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	12	14	17	20	26	26	31	35
Thickness of countersunk washer W-HAZ-SK	t _{sk}	[mm]	4	5	6	7	-	-	-	-
Minimum thickness of fixture W-HAZ-SK	t _{fix,min} 2)	[mm]	8	10	14	18	-	-	-	-
Installation torque T _{inst} (W-HAZ-B, W-HAZ-S)	T _{inst} =	[Nm]	15	30	50	80	160	160	280	280
Installation torque T_{inst} (W-HAZ-SK)	T _{inst} =	[Nm]	10	25	55	70	-	-	-	-
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 50	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100	h _{ef} + 115	h _{ef} + 125	h _{ef} + 150
Uncracked concrete										
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	60	70	100	100	125	150
Wilnimum spacing 17-7	for c≥	[mm]	80	100	120	140	180	180	300	300
Minimum edge distance 1) 3)	C _{min}	[mm]	50	60	60	70	100	100	180	150
Millimoni eage disiance	for s ≥	[mm]	100	120	120	160	220	220	540	300
Cracked concrete										
Minimum spacing 1) 3)	S _{min}	[mm]	50	50	60	70	100	100	125	150
willinion spacing · ·	for c≥	[mm]	50	80	120	140	180	180	300	300
Minimum adag diatanga 1) 3)	C _{min}	[mm]	50	55	60	70	100	100	180	150
Minimum edge distance 1) 3)	for s ≥	[mm]	50	100	120	160	220	220	540	300

- 1) Intermediate values by linear interpolation
- 2) Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer tsk. It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).
- 3) For fire exposure from more than one side c \geq 300 mm or $c_{_{min}} \geq$ 300 mm applies.

Installation instructions

A) Bore hole drilling la. Hammer drilling (HD) Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. In case of aborted drill hole, the drill hole shall be filled with mortar. Hollow drill bit system (HDB) 1b. Drill a hole into the base material to the size and embedment depth required by the selected anchor. This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3. B) Bore hole cleaning 2. Clean the bore hole from the bottom until the return air stream is without dust. C) Setting the fastener 3a. Drive the anchor with hammer impact into the drill hole and check the specified embedment depth. 3b. Application of the required torque moment using a calibrated torque wrench.

W-HAZ-B/A4

Stainless steel - A4 (AISI 316): M8 - M16

W-HAZ-S/A4

Stainless steel - A4 (AISI 316): M8 - M16

Approved for:

Concrete C20/25 to C50/60, non-cracked & cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Variable effective anchorage depths possible!

Type of installation		
Pre-positioned	In-place	Stand-off
	✓	_

W-HAZ-SK/A4

Stainless steel - A4 (AISI 316): M8 - M12

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DiBt, Berlin	EAD 330232-01-0601	ETA-02/0031 / 2021-28-01
Shock test, Critical infra- structure protection	BABS, CH-Bern		BZS D 09-0605 /2010-04-28

Basic loading data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, f_{ck} = 20 N/mm²
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

Mean ultimate resistance

Thread size				12/M8	15/M10	18M12	24/M16
Effective anchorage depth		h _{ef}	[mm]	60	71	80	100
Non-cracked concrete							
Tension	C20/25	N _{Ru,m}	[kN]	21.6	33.2	42.3	76.6
Shear		V _{Ru,m}	[kN]	32.4	47.9	72.9	111.1
Cracked concrete							
Tension	C20/25	N _{Ru,m}	[kN]	18.1	28.9	33.9	62.8
Shear	C20/25	V _{Ru,m}	[kN]	32.4	47.9	72.9	111.1

Characteristic resistance

Thread size				12/M8	15/M10	18M12	24/M16			
Effective anchorage depth		h _{ef}	[mm]	60	<i>7</i> 1	80	100			
Non-cracked concrete										
Tension	C20/25	N.	[L K I]	16.0	25.0	35.0	49.2			
	C50/60	N_{Rk}	[kN]	25.3	39.5	55.3	77.8			
Cl	C20/25	.,	FI > 13	24.0	37.0	62.0	92.0			
Shear	C50/60	V _{Rk}	[kN]	24.0	37.0	62.0	92.0			
Cracked concrete										
т .	C20/25		[] []	9.0	16.0	24.6	34.4			
Tension Shear	C50/60	N _{Rk}	[kN]	14.2	25.3	39.0	54.4			
	C20/25	,,	[LNI]	24.0	37.0	49.3	68.9			
	C50/60	V _{Rk}	[kN]	24.0	37.0	62.0	92.0			

Design resistance

Thread size					12/M8	15/M10	18M12	24/M16
Effective an	chorage depth		h _{ef}	[mm]	60	71	80	100
Non-crac	ked concrete							
	S and SK	C20/25			10.7	16.7	23.3	32.8
.	5 and 5K	C50/60]	[LV]	13.9	21.9	32.1	51.9
Tension	В	C20/25	N _{Rd}	[kN]	10.7	16.7	23.3	32.8
	В	C50/60			16.9	26.4	36.9	51.9
	c lov	C20/25			17.6	27.2	45.6	65.6
Cl	S and SK	C50/60] ,,	[]]]	17.6	27.2	45.6	67.6
Shear	<u></u>	C20/25	V _{Rd}	[kN]	19.2	29.6	46.9	65.6
	В	C50/60			19.2	29.6	49.6	73.6
Cracked	oncrete							
	C LCK	C20/25			6.0	10.7	16.4	23.0
.	S and SK	C50/60] , .	[LV]	9.5	16.9	26.0	36.3
Tension	_	C20/25	N _{Rd}	[kN]	6.0	10.7	16.4	23.0
	В	C50/60]		9.5	16.9	26.0	36.3
	C LCK	C20/25			17.6	27.2	32.9	45.9
Cl	S and SK	C50/60		[[KI]	17.6	27.2	45.6	67.6
Shear	D	C20/25	V _{Rd}	[kN]	19.2	27.5	32.9	45.9
	В	C50/60			19.2	29.6	49.6	72.6

Recommended/allowable loads 1)

Thread size					12/M8	15/M10	18M12	24/M16
Effective an	chorage depth		h _{ef}	[mm]	60	71	80	100
Non-crac	ked concrete							
	c lov	C20/25			7.6	11.9	16.7	23.4
Tension	S and SK	C50/60		[LKI]	9.9	15.7	22.9	37.0
iension	В	C20/25	IN rec	[kN]	7.6	11.9	16.7	23.4
	В	C50/60			12.0	18.8	26.4	37.0
	S and SK	C20/25			12.6	19.4	32.6	46.9
Cl	3 and 3K	C50/60	,,	[LKI]	12.6	19.4	32.6	48.3
Shear	В	C20/25	rec	[kN]	13. <i>7</i>	21.1	33.5	46.9
	В	C50/60			13.7	21.1	16.7 22.9 16.7 26.4 32.6 32.6	52.6
Cracked o	concrete	C20/25 C50/60 C20/25 C50/60 C20/25 C50/60 C20/25						
	S and SK	C20/25			4.3	7.6	11.7	16.4
.	5 and 5K	C50/60] , .	[LV]	6.8	12.0	18.6	25.9
Tension	В	C20/25	IN	[kN]	4.3	7.6	11. <i>7</i>	16.4
	В	C50/60			6.8	12.0	18.6	25.9
	S and SK	C20/25			12.6	19.4	23.5	32.8
Shear	5 and 5K	C50/60		[LKI]	12.6	19.4	32.6	48.3
onear	D	C20/25	Yrec	[kN]	13.7	19.6	23.5	32.8
	В	C50/60			13.7	21.1	35.4	51.9

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{L}}$ = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- · Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table
- Tables calculated for standard effective anchorage depths. Larger effective anchorage depths possible

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,S}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} = N_{Rd,sp}^0 \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_h$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load No., of a single anchor

			K	u,s -		
Thread size			12/M8	15/M10	18M12	24/M16
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
SK			13.9	21.9	32.1	-
S	N _{Rd,s}	[kN]	13.9	21.9	32.1	58.8
В			17.3	27.3	40.0	73.3

2. Design pullout resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$$

Table 2: Basic design resistance $N_{Rd,p}^0$ in case of pull-out failure of a single anchor

ка,р	,			-		
Thread size			12/M8	15/M10	18M12	24/M16
Effective anchorage depth	h _{ef}	[mm]	60	<i>7</i> 1	80	100
Non-cracked concrete						
SK	N 10	[] []	10.7	16.7	23.3	-
S and B	N ⁰ _{Rd,p}	[kN]	10.7	16.7	23.3	33.3
Cracked concrete						
SK	N 10	[] []	6.0	10.7	16.7	-
S and B	N ⁰ _{Rd,p}	[kN]	6.0	10.7	16.7	24.0
S and B	Rd,p	[1/14]	6.0	10.7	16.7	24.0

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance N_{Rdc}^0 in case of concrete cone failure of a single anchor

Thread size			12/M8	15/M10	18M12	24/M16
Effective anchorage depth	h _{ef}	[mm]	60	<i>7</i> 1	80	100
Non-cracked concrete						
SK	N 10	[L K I]	15.2	19.6	23.5	-
S and B	N ⁰ _{Rd,c}	[kN]	15.2	19.6	23.5	32.8
Cracked concrete						
SK	N10	[L K I]	10.7	13.7	16.4	-
S and B	N ⁰ _{Rd,c}	[kN]	10.7	13.7	16.4	23.0

²⁾ strength at 28 days of 150 mm cubes

Table 5: Characteristic edge distance $c_{\alpha N}$ and spacing $s_{\alpha N}$

Thread size			12/M8	15/M10	18M12	24/M16
Effective anchorage depth	h _{ef}	[mm]	60	<i>7</i> 1	80	100
Characteristic spacing	S _{cr, N}	[mm]	180	213	240	300
Characteristic edge distance	C _{cr, N}	[mm]	90	107	120	150

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f_{sx}, f_{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacing s, when there are different spacings in one row

²⁾ strength at 28 days of 150 mm cubes

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 8: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

4. Design splitting resistance

$$N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_k \le 0.3$ mm

Table 9: Design resistance No. in case of concrete splitting failure of a single anchor

Rd,sp		· · · /-	0			
Thread size			12/M8	15/M10	18M12	24/M16
Effective anchorage depth	h _{ef}	[mm]	60	<i>7</i> 1	80	100
Non-cracked concrete						
Splitting resistance	N ⁰ _{Rd,sp}	[kN]	10.7	16.7	23.3	32.8

Table 10: Characteristic edge distance $c_{cr,sp}$ and spacing $s_{cr,sp}$

Thread size			12/M8	15/M10	18M12	24/M16
Effective anchorage depth	h _{ef}	[mm]	60	<i>7</i> 1	80	100
Characteristic spacing	S _{cr, sp}	[mm]	360	470	530	600
Characteristic edge distance	C _{cr, sp}	[mm]	180	235	265	300
Minimum member thickness	h _{min}	[mm]	120	140	160	200

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders 1)	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per	s/s _{cr,sp} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
direction																				
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f sx,sp f sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 13: Influence of edge distance on splitting resistance

			-		,	_													
c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure V

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

 $\text{3. Concrete edge failure } \qquad V_{\textit{Rd,c}} = V^{\textit{0}}_{\textit{Rd,c}} \cdot f_{\textit{b,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c.2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$

1. Design steel shear resistance

Table 15: Design value of steel resistance V_{pds} of a single anchor

	Ka,s					
Screw size			12/M8	15/M10	18M12	24/M16
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
SK			17.6	27.2	45.6	-
S	$V_{Rd,s}$	[kN]	17.6	27.2	45.6	67.6
В			19.2	29.6	49.6	73.6

2. Concrete pry-out pesistance

$$V_{_{Rd,c}} = k_{_{\mathcal{B}}} \cdot N_{_{Rd,c}}$$

Table 16: factor k_{s} for calculating design pry-out resistance

Screw size			12/M8	15/M10	18M12	24/M16
Effective anchorage depth	h _{ef}	[mm]	60	<i>7</i> 1	80	100
Concrete pry-out resistance factor	k ₈	[-]	2.0	2.0	2.0	2.0

3. Concrete edge resistance

$$V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{s,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{h}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance V_{Rdc}^0 in case of concrete edge failure

Thread size		12/	'M8			15/	M10			18/	M12			24/	M16	
h _{ef} [mm]	6	0	10	00	7	1	1	10	8	0	13	30	10	00	13	50
Edge distance								٧	O Rd,c							
c ₁																
[mm]								[k	:N]							
	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked	non- cracked	cracked
50	4.5	3.2	5.1	3.6	-	-	-	-	-	-	-	-	-	-	-	-
55	5.1	3.6	5.7	4.1	-	-	-	-	-	-	-	-	-	-	-	-
60	5.7	4.1	6.4	4.5	-	4.4	-	4.9	-	-	-	-	-	-	-	-
65	6.4	4.5	<i>7</i> .1	5.0	-	4.8	-	5.4	-	-	-	-	-	-	-	-
70	7.0	5.0	7.8	5.5	-	5.3	-	5.9	8.0	5.6	9.0	6.4	-	-	-	-
75	7.7	5.5	8.5	6.0	-	5.8	-	6.4	8.7	6.2	9.8	6.9	-	-	-	-
80	8.4	6.0	9.3	6.6	-	6.3	-	7.0	9.5	6.7	10.6	7.5	-	7.4	-	8.3
85	9.1	6.5	10.0	<i>7</i> .1	9.7	6.9	10.6	7.5	10.2	7.2	11.5	8.1	-	8.0	-	8.9
90	9.8	7.0	10.8	7.6	10.5	7.4	11.4	8.1	11.0	7.8	12.3	8.7	-	8.6	-	9.6
95	10.6	7.5	11.6	8.2	11.2	8.0	12.3	8.7	11.8	8.4	13.2	9.3	-	9.2	-	10.2
100	11.3	8.0	12.4	8.8	12.0	8.5	13.1	9.3	12.6	9.0	14.1	10.0	-	9.8	-	10.9
110	12.9	9.1	14.1	10.0	13.7	9.7	14.8	10.5	14.3	10.2	15.9	11.2	-	11.1	-	12.3
120	14.5	10.3	15.8	11.2	15.3	10.9	16.6	11.8	16.1	11.4	17.7	12.6	-	12.4	-	13.7
130	16.2	11.5	17.6	12.4	1 <i>7</i> .1	12.1	18.5	13.1	17.9	12.7	19.7	13.9	-	13.8	-	15.1
140	17.9	12.7	19.4	13.7	18.9	13.4	20.4	14.4	19.7	14.0	21.6	15.3	-	15.2	-	16.6
150	19.7	13.9	21.3	15.1	20.7	14.7	22.3	15.8	21.6	15.3	23.7	16.8	-	16.6	-	18.1
160	21.5	15.2	23.2	16.4	22.6	16.0	24.3	17.2	23.6	16.7	25.7	18.2	-	18.1	-	19.7
170	23.4	16.6	25.2	17.8	24.6	17.4	26.3	18.7	25.6	18.1	27.9	19.7	-	19.6	-	21.2
180	25.3	17.9	27.2	19.3	26.5	18.8	28.4	20.1	27.6	19.6	30.0	21.3	29.8	21.1	32.3	22.9
190	27.3	19.3	29.3	20.7	28.6	20.2	30.6	21.6	29.7	21.0	32.3	22.8	32.0	22.7	34.6	24.5
200	29.3	20.7	31.4	22.2	30.7	21.7	32.7	23.2	31.9	22.6	34.5	24.4	34.2	24.3	37.0	26.2
250	39.9	28.3	42.5	30.1	41.7	29.5	44.2	31.3	43.2	30.6	46.4	32.9	46.1	32.7	49.5	35.1
300	51.5	36.5	54.7	38.7	53.6	38.0	56.7	40.2	55.4	39.2	59.3	42.0	59.0	41.8	63.0	44.6
350	64.0	45.3	67.7	47.9	66.4	47.0	70.0	49.6	68.5	48.5	73.1	51.8	72.7	51.5	77.3	54.8
400	77.2	54.7	81.4	57.7	80.0	56.7	84.2	59.6	82.5	58.4	87.7	62.1	87.2	61.8	92.5	65.5
450	91.2	64.6	96.0	68.0	94.4	66.9	99.1	70.2	97.1	68.8	103.0	73.0	102.5	72.6	108.4	76.8
500	105.9	75.0	111.2	78.8	109.5	77.5	114.7	81.2	112.5	79.7	119.1	84.3	118.5	83.9	125.1	88.6
550	121.2	85.9	127.1	90.1	125.2	88. <i>7</i>	130.9	92.8	128.6	91.1	135.8	96.2	135.2	95.8	142.4	100.9
600	137.2	97.2	143.7	101.8	141.5	100.2	147.9	104.7	145.2	102.9	153.2	108.5	152.5	108.0	160.4	113.6
650	153.8	108.9	160.8	113.9	158.5	112.3	165.4	11 <i>7</i> .1	162.5	115.1	171.1	121.2	170.4	120.7	179.0	126.8
700	170.9	121.0	178.5	126.5	176.0	124.7	183.5	130.0	180.4	127.8	189. <i>7</i>	134.4	188.9	133.8	198.2	140.4
750	-	-	196.8	139.4	194.1	137.5	202.1	143.2	198.8	140.8	208.8	147.9	208.0	147.3	217.9	154.4
800	-	-	215.7	152.8	212.8	150.7	221.3	156.8	217.8	154.3	228.5	161.8	227.6	161.2	238.2	168.7

Thread size		12/	'M8			15/	M10			18/	112			24/	M16	
h _{ef} [mm]	6	0	10	00	7	1	1	10		0	13	30	10	00	13	50
Edge distance c ₁								٧	O Rd,c							
[mm]								[k	:N]							
	non- cracked	cracked														
850	-	-	235.0	166.5	231.9	164.3	241.1	170.7	237.3	168.1	248.7	176.1	247.8	175.5	259.0	183.5
900	-	-	254.9	180.5	251.6	178.2	261.3	185.1	257.3	182.3	269.4	190.8	268.5	190.2	280.4	198.6
950	-	-	275.2	194.9	-	-	282.0	199.8	277.8	196.8	290.6	205.8	289.6	205.2	302.2	214.1
1000	-	-	296.0	209.7	-	-	303.2	214.8	298.8	211.6	312.3	221.2	311.3	220.5	324.6	229.9
1100	-	-	-	-	-	-	347.0	245.8	-	-	357.1	252.9	356.0	252.1	370.6	262.5
1200	-	-	-	-	-	-	-	-	-	-	403.6	285.9	402.4	285.1	418.5	296.5
1300	-	-	-	-	-	-	-	-	-	-	451.9	320.1	450.6	319.2	468.1	331.6
1400	-	-	-	-	-	-	-	-	-	-	-	-	500.5	354.5	519.4	367.9
1500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	572.3	405.3
1600	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1700	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,v} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

²⁾ strength at 28 days of 150 mm cubes

Table 19: Influence of spacing on concrete edge resistance

			_		_												
s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f,v	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of edge distance

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3} \frac{c_2}{c_1}\right) \left(0.7 + 0.3 \frac{c_2}{1.5 c_1}\right)$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

^{1]} Distance to the second edge: $c_1 \le c_2$

d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

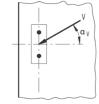


Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	≥ 1.50
$f_{h,V}$	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

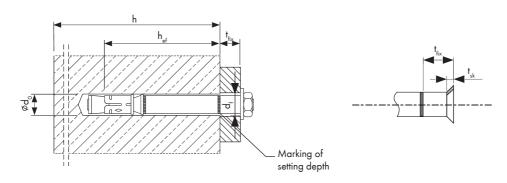
Mechanical characteristics

Thread size				12/M8	15/M10	18/M12	24/M16	
Effective anchorage	depth	h _{ef}	[mm]	60	71	80	100	
Governing cross	section (bolt)							
Stressed cross section		A _s	[mm ²]	36.6	58	84.3	157	
Section modulus		W	[mm ³]	31.2	62.3	109.1	276.6	
Yield strength		f	[N/mm²]	560	560	560	560	
Tensile strength		f	[N/mm²]	700	700	700	700	
Governing cross	section (screw)							
Stressed cross section		A _s	[mm ²]	36.6	58	84.3	157	
Section modulus		W	[mm ³]	31.2	62.3	109.1	276.6	
Yield strength		f,	[N/mm²]	450	450	450	450	
Tensile strength		f	[N/mm²]	700	700	700	700	
Design bending	В		[h.]	20.8	41.6	73.6	185.6	
moment	S and SK	M _{Rd,s}	[Nm]	16.7	33.3	59.0	148.7	

^{*}For larger effective anchorage depths, design bending moments are higher

Material specifications

Product description	Stainless steel A4
Threaded bolt	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
Washer	Stainless steel, EN 10088:2014
Distance sleeve	Steel tube stainless steel, 1.4401, 1.4404 or 1.4571; EN 10217-7:2014, EN 10216-5:2013
Ring	Polyethylene
Expansion sleeve	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
Threaded cone	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
Hexagon nut	Stainless steel, strength class 70, EN ISO 3506-2:2009
Hexagon head screw	Stainless steel, strength class 70, EN ISO 3506-1:2009
Countersunk screw	Stainless steel, strength class 70, EN ISO 3506-1:2009
Countersunk washer	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014, zinc plated



Installation parameters

Thread size			12/M8	15/M10	18/M12	24/M16
Size of thread		[-]	M8	M10	M12	M16
AACC III II II	h _{ef,min}	[mm]	60	71	80	100
Minimum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150
Nominal drill hole diameter	d_{\circ}	[mm]	12	15	18	24
Cutting diameter of drill bit	d _{cut} ≤	[mm]	12.5	15.5	18.5	24.5
Depth of drill hole	h₁ ≥	[mm]	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	14	1 <i>7</i>	20	26
Thickness of countersunk washer W-HAZ-SK	† sk	[mm]	5	6	7	-
Minimum thickness of fixture W-HAZ-SK	t _{fix,min} 2)	[mm]	10	14	18	-
Installation torque T _{inst} (W-HAZ-B)	T _{inst} =	[Nm]	35	55	90	170
Installation torque T _{inst} (W-HAZ-S)	T _{inst} =	[Nm]	30	50	80	1 <i>7</i> 0
Installation torque T _{inst} (W-HAZ-SK)	T _{inst} =	[Nm]	1 <i>7</i> .5	42.5	50	-
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100
Uncracked concrete						
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	70	80
Willing Spacing 1	for c ≥	[mm]	80	120	140	180
Minimum edge distance 1) 3)	C _{min}	[mm]	50	85	70	180
Millimoni eage distance	for s ≥	[mm]	80	185	160	80
Cracked concrete						
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	70	80
willing spacing · ·	for c ≥	[mm]	80	120	140	180
Minimum edge distance 1) 3)	C _{min}	[mm]	50	60	70	80
Willimon eage assance 7-7	for s ≥	[mm]	80	120	160	200

¹⁾ Intermediate values by linear interpolation

³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{ak}. It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).

Installation instructions

A) Bore hole drilling Hammer drilling (HD) 1a. Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. In case of aborted drill hole, the drill hole shall be filled with mortar. 1b. Hollow drill bit system (HDB) Drill a hole into the base material to the size and embedment depth required by the selected anchor. This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step C. B) Bore hole cleaning 2. Clean the bore hole from the bottom until the return air stream is without dust. C) Setting the fastener 3a. Drive the anchor with hammer impact into the drill hole and check the specified embedment depth. 3b. Application of the required torque moment using a calibrated torque wrench.

W-FA/S

Galvanized (5 microns): M6 - M20

W-FA/S WITH BIG WASHER

Galvanized (5 microns): M6 - M20

W-FA/F

Hot-dipped (≥ 40 microns): M6 - M16

Approved for:

Concrete C20/25 to C50/60, non-cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Type of installation		
Pre-positioned	In-place	Stand-off
_	✓	_

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DiBt, Berlin	EAD 330232-01-0601	ETA-02/0001 /2017-08-10
European Technical Assessment	DiBt, Berlin	ETAG 001 Part 6	ETA-06/0162 /2018-05-17
Report fire resistance	Ing. Büro Thiele, Pirmasens	EN 1363-1:2012-10 / TR 020	21730_2/2017-06-21

Basic loading data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

Mean ultimate resistance

Thread size: M6 - M10

Thread size				M6		M8			M10			
Effective anchorage depth		h _{ef}	[mm]	301)	40	60	351)	44	70	42	48	80
Non-cracked concrete												
Tension	C20/25	N _{Ru,m}	[kN]	9.1	9.1	9.1	12.3	14.7	14.7	18.4	19.1	19.1
Shear	C20/25	V _{Ru,m}	[kN]	7.2	7.2	7.2	13.2	13.2	13.2	20.9	20.9	20.9

Thread size: M12 - M20

Thread size				M12			M16			M20		
Effective anchorage depth		h _{ef}	[mm]	50	65	100	64	82	120	<i>7</i> 8	100	115
Non-cracked concrete												
Tension	C20/25	N _{Ru,m}	[kN]	18.4	19.1	19.1	34.6	45.4	45.4	46.5	63.9	63.9
Shear	C20/25	V _{Ru,m}	[kN]	20.9	20.9	20.9	52.7	52.7	52.7	82.3	82.3	82.3

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Characteristic resistance

Thread size: M6 - M10

Thread size					M6			M8			M10	
Effective anchorage depth		$h_{\rm ef}$	[mm]	301)	40	60	351)	44	70	42	48	80
Non-cracked concrete												
т .	C20/25	N.I.	[] > 1]	6.5	8.7	8.7	10.2	13.0	13.0	13.4	16.4	16.4
Tension	C50/60	N_{Rk}	[kN]	8.7	8.7	8.7	15.3	15.3	15.3	21.2	25.9	25.9
Shear	≥ C20/25	V_{Rk}	[kN]	5.0	5.0	5.0	11.0	11.0	11.0	1 <i>7</i> .0	1 <i>7</i> .0	17.0

Thread size				M12		M16			M20			
Effective anchorage depth		h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Non-cracked concrete												
Tension	C20/25	,	[LVI]	17.4	25.8	26.0	25.2	36.5	40.0	33.9	49.2	55.0
rension	C50/60	N _{Rk}	[kN]	22.7	33.7	33.9	34.1	49.4	54.1	53.6	77.8	87.0
Shear	≥ C20/25	V _{Rk}	[kN]	25.0	25.0	25.0	44.0	44.0	44.0	69.0	69.0	69.0

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Design resistance

Thread size: M6 - M10

Thread size					M6			M8			M10	
Effective anchorage depth		h _{ef}	[mm]	301)	40	60	351)	44	70	42	48	80
Non-cracked concrete												
т .	C20/25			4.3	5.8	5.8	6.8	8.7	8.7	8.9	10.9	10.9
Tension	C50/60	N _{Rd}	[kN]	5.8	5.8	5.8	10.2	10.2	10.2	14.1	17.2	1 <i>7</i> .3
Shear	≥ C20/25	V _{Rd}	[kN]	4.0	4.0	4.0	8.8	8.8	8.8	13.6	13.6	13.6

Thread size: M12 - M20

Thread size				M12				M16			M20	
Effective anchorage depth		h _{ef}	[mm]	50	65	100	64	82	120	<i>7</i> 8	100	115
Non-cracked concrete												
т .	C20/25		[kN]	11.6	1 <i>7</i> .2	1 <i>7</i> .3	16.8	24.3	26.7	22.6	32.8	36.7
Tension	C50/60	N_{Rd}	[KIN]	15.1	22.4	22.6	22.7	32.9	36.1	35. <i>7</i>	51.9	58.0
Shear	≥ C20/25	V _{Rd}	[kN]	20.0	20.0	20.0	33.1	33.1	33.1	51.9	51.9	51.9

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Recommended/allowable Loads 1)

Thread size: M6 - M10

Thread size				M6				M8			M10	
Effective anchorage depth		h _{ef}	[mm]	302)	40	60	35 ²⁾	44	70	42	48	80
Non-cracked concrete												
T .	C20/25		[[]]	3.1	4.1	4.1	4.9	6.2	6.2	6.4	7.8	7.8
Tension	C50/60	N _{rec}	[kN]	4.1	4.1	4.1	7.3	7.3	7.3	10.1	12.3	12.3
Shear	≥ C20/25	V	[kN]	2.9	2.9	2.9	6.3	6.3	6.3	9.7	9.7	9.7

Thread size				M12				M16			M20	
Effective anchorage depth		h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Non-cracked concrete												
Tension	C20/25		[LVI]	8.3	12.3	12.4	12.0	1 <i>7</i> .4	19.0	16.1	23.4	26.2
	C50/60	N _{rec}	[kN]	10.8	16.0	16.1	16.2	23.5	25.8	25.5	37.0	41.4
Shear	≥ C20/25	V	[kN]	14.3	14.3	14.3	23.6	23.6	23.6	3 <i>7</i> .1	37.1	3 <i>7</i> .1

 $^{^{1)}}$ Material safety factor $\gamma_{_{M}}$ and safety factor for action $\gamma_{_{L}}$ = 1.4 are included. The material safety factor depends on the failure mode.

^{2]} Use restricted to anchoring of structural components that are statically indeterminate

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- · Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table
- Anchorage depths hef < 40 mm are restricted to use of structural components with which are statically interested and subject to internal exposure conditions only

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} \cdot f_{Rd,sp} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Design steel resistance	N _{Rd,s}	[kN]	5.8	5.8	5.8	10.2	10.2	10.2	1 <i>7</i> .3	1 <i>7</i> .3	1 <i>7</i> .3

Thread size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Design steel resistance	N _{Rd,s}	[kN]	23.3	23.3	23.3	40.6	40.6	40.6	66.9	66.9	66.9

2. Design pullout resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$$

Table 2: Basic design resistance $N^0_{Rd,p}$ in case of pull-out failure of a single anchor

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Design pull-out resistance	$N_{Rd,p}^0$	[kN]	4.3	6.7	6.7	6.8	8.7	8.7	8.9	10.9	10.9

Thread size: M12 - M20

Thread size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	11.6	17.2	17.3	16.8	24.3	26.7	22.6	32.8	36.7

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

3. Design concrete cone resistance

$$N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance $N^0_{Rd,c}$ in case of concrete cone failure of a single anchor

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	5.4	8.3	15.2	6.8	9.6	19.2	8.9	10.9	23.5

Thread size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	11.6	17.2	32.8	16.8	24.4	43.1	22.6	32.8	40.4

²⁾ strength at 28 days of 150 mm cubes

Table 5: Characteristic edge distance $c_{cr,N}$ and spacing $s_{cr,N}$

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Characteristic spacing	S _{cr, N}	[mm]	90	120	180	105	132	210	126	144	240
Characteristic edge distance	C _{cr, N}	[mm]	45	60	90	53	66	105	63	72	120

Thread size: M12 - M20

Thread size			M12				M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Characteristic spacing	S _{cr, N}	[mm]	150	195	300	192	246	360	234	300	345
Characteristic edge distance	C _{cr, N}	[mm]	75	98	150	96	123	180	11 <i>7</i>	150	1 <i>7</i> 3

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

²⁾ strength at 28 days of 150 mm cubes

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 8: Influence of edge distance on concrete cone resistance

c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

4. Design splitting resistance

 $N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \le 0.3$ mm

Table 9: Design resistance $N_{Rd,sp}^0$ in case of concrete splitting failure of a single anchor

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Design splitting resistance	N ⁰ _{Rd,sp}	[mm]	4.3	6.7	6.7	6.8	8.7	8.7	8.9	10.9	10.9

Thread size: M12 - M20

Thread size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Design splitting resistance	N ⁰ _{Rd,sp}	[mm]	11.6	1 <i>7</i> .2	1 <i>7</i> .3	16.8	24.3	26.7	22.6	32.8	36.7

Table 10: Characteristic edge distance $c_{cr,sp}$ and spacing $s_{cr,sp}$

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Characteristic spacing	S _{cr, sp}	[mm]	180	160	360	180	220	240	180	240	480
Characteristic edge distance	C _{cr, sp}	[mm]	90	80	180	90	110	210	90	120	240
Minimum member thickness	h _{min}	[mm]	80	100	120	80	100	126	100	100	132

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Characteristic spacing	S _{cr, sp}	[mm]	180	340	600	180	410	720	180	560	690
Characteristic edge distance	C _{cr, sp}	[mm]	90	170	300	90	205	360	90	280	345
Minimum member thickness	h _{min}	[mm]	100	130	165	130	170	208	160	200	215

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

^{1]} strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

		-			-															
Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacing s, when there are different spacings in one row

²⁾ strength at 28 days of 150 mm cubes

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \leq 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \leq 1$$

Table 13: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f cx,2, sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/ł	n _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f		1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{{\scriptscriptstyle Rd,c}} = k \cdot N_{{\scriptscriptstyle Rd,c}}$

 $\text{3. Concrete edge failure } \qquad V_{\textit{Rd,c}} = V^{\textit{0}}_{\textit{Rd,c}} \cdot f_{\textit{b,V}} \cdot f_{\textit{s,V}} \cdot f_{\textit{c2,V}} \cdot f_{\textit{a}} \cdot f_{\textit{h}}$

1. Design steel shear resistance

Table 15: Design value of steel resistance $V_{\rm Rd,s}$ of a single anchor

Thread size: M6 - M10

Screw size				M6			M8			M10	
Effective anchorage depth	fective anchorage depth h _{ef} [mm]					35	44	70	42	48	80
Design steel resistance						8.8	8.8	8.8	13.6	13.6	13.6

Thread size: M12 - M20

Screw size				M12			M16			M20			
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	<i>7</i> 8	100	115		
Design steel resistance	V _{Rd,s}	[kN]	20.0	20.0	20.0	33.1	33.1	33.1	51.9	51.9	51.9		

2. Concrete pry-out resistance

 $V_{Rd,c} = k_g \cdot N_{Rd,c}$

Table 16: factor k_8 for calculating design pry-out resistance

Thread size: M6 - M10

Screw size	Screw size						M8		M10			
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80	
Concrete pry-out resistance factor	k ₈	[-]	1.0	1.0	1.0	2.3	2.3	2.3	2.5	2.5	2.5	

Screw size			M12			M16		M20			
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Concrete pry-out resistance factor	k ₈	[-]	2.9	2.9	2.9	2.8	2.8	2.8	3.1	3.1	3.1

3. Concrete edge resistance

$$V_{\mathrm{Rd,c}} = V_{\mathrm{Rd,c}}^0 \cdot f_{\mathrm{b,V}} \cdot f_{\mathrm{s,V}} \cdot f_{\mathrm{c2,V}} \cdot f_{\mathrm{a}} \cdot f_{\mathrm{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V^{o}_{_{Rd,c}}$ in case of concrete edge failure

Thread size		M6	, Rd,c		M8			M10			M12			M16			M20	
h _{ef} [mm]	30	40	60	35	44	70	42	48	80	50	65	100	64	82	120	78	100	115
Edge distance										0								
c ₁									٧	0 Rd,c								
[mm]									[k	:N]								-
								n	on-crack	ed concr	ete							
40	2.7	2.8	3.0	-			-		-	-	-		-	-	-	-	-	_
45	3.1	3.3	3.5	3.3	3.5	3.8	-	-	-		-	-	-	-	-	-	-	-
50	3.6	3.8	4.0	3.9	4.0	4.3	-	-	-	-	-	-	-	-	-	-	-	-
55	4.1	4.3	4.6	4.4	4.5	4.9	-	-	-	-	-	-	-	-	-	-	-	-
60	4.7	4.9	5.2	4.9	5.1	5.5	-	-	-	-	-	-	-	-	-	-	-	-
65	5.2	5.4	5.7	5.5	5.7	6.2	5.8	6.0	6.5	-	-	-	-	-	-	-	-	-
70	5.8	6.0	6.4	6.1	6.3	6.8	6.5	6.6	7.2	-	-	-	-	-	-	-	-	-
75	6.4	6.6	7.0	6.7	6.9	7.5	<i>7</i> .1	7.2	7.9	-	-	-	-	-	-	-	-	-
80	7.0	7.2	7.6	7.4	7.6	8.1	7.7	7.9	8.6	-	-	-	-	-	-	-	-	-
85	7.6	7.9	8.3	8.0	8.2	8.8	8.4	8.6	9.3	-	-	-	-	-	-	-	-	-
90	8.3	8.5	9.0	8.7	8.9	9.5	9.1	9.3	10.1	-	10.0	10.8	-	-	-	-	-	-
95	8.9	9.2	9.7	9.3	9.6	10.3	9.8	10.0	10.8	-	10.7	11.6	-	-	-	-	-	-
100	9.6	9.9	10.4	10.0	10.3	11.0	10.5	10.7	11.6	11.0	11.5	12.4	11.9	-	-	-	-	-
110	11.0	11.3	11.8	11.5	11.8	12.5	12.0	12.2	13.2	12.5	13.1	14.1	13.5	14.2	15.3	-	-	-
120	12.4	12.8	13.4	12.9	13.3	14.1	13.5	13.8	14.8	14.1	14.7	15.8	15.2	15.9	1 <i>7</i> .1	-	-	
130	13.9	14.3	14.9	14.5	14.9	15.8	15.1	15.4	16.5	15.8	16.4	17.6	16.9	17.7	19.0	-	18.9	19.5
140	15.4	15.9	16.6	16.1	16.5	17.4	16.8	17.0	18.3	17.5	18.1	19.4	18. <i>7</i>	19.5	20.9	19.9	20.9	21.4
150	17.0	17.5	18.3	17.7	18.2	19.2	18.5	18.8	20.1	19.2	19.9	21.3	20.6	21.4	22.9	21.8	22.8	23.5
160	18.7	19.2	20.0	19.4	19.9	21.0	20.2	20.5	21.9	21.0	21.8	23.2	22.4	23.3	24.9	23.8	24.9	25.5
170	20.4	20.9	21.8	21.1	21.6	22.8	22.0	22.3	23.8	22.8	23.6	25.2	24.4	25.3	27.0	25.8	26.9	27.6
180	22.1	22.7	23.6	22.9	23.5	24.7	23.8	24.2	25.8	24.7	25.6	27.2	26.3	27.3	29.1	27.9	29.1	29.8
190	23.9	24.5	25.4	24.7	25.3	26.6	25.7	26.1	27.8	26.7	27.6	29.3	28.4	29.4	31.3	30.0	31.2	32.0
200	25.7	26.3	27.4	26.6	27.2	28.6	27.6	28.0	29.8	28.6	29.6	31.4	30.4	31.5	33.5	32.1	33.4	34.3
250	35.4	36.2	37.5	36.6	37.3	39.1	37.8	38.3	40.6	39.1	40.3	42.5	41.4	42.8	45.2	43.5	45.1	46.1
300	46.0	47.0	48.6	47.4	48.4	50.5	49.0	49.6	52.3	50.5	52.0	54.7	53.3	54.9	57.8	55.8	57.8	59.0
350	57.4	58.6	60.5	59.1	60.2	62.8	61.0	61.7	64.9	62.8	64.5	67.7	66.0	68.0	71.4	69.0	71.3	72.7
400	-	71.0	73.2	71.6	72.9	75.8	73.7	74.6	78.2	75.9	77.8	81.4	79.6	81.8	85. <i>7</i>	83.0	85.6	87.2
450	-	-	86.7	84.8	86.3	89.6	87.3	88.2	92.4	89.7	91.9	96.0	93.9	96.4	100.8	97.8	100.7	102.5
500	-	-	100.8	-	-	104.1	101.5	102.6	107.2	104.2	106.7	111.2	108.9	111.7	116.6	113.2	116.5	118.5
550	-	-	115.6	-	-	119.3	116.3	117.5	122.7	119.3	122.1	127.1	124.5	127.6	133.0	129.3	133.0	135.2
600	-		131.0	-		135.1	131.8	133.1	138.8	135.1	138.1	143.7	140.8	144.2	150.1	146.1	150.1	152.5
650	-	-	-	-	-	151.4	-	-	155.5	151.5	154.8	160.8	157.7	161.4	167.8	163.5	167.8	170.4
700	-	-	-	-	-	168.4	-	-	172.8	168.4	172.0	178.5	175.2	179.2	186.1	181.4	186.1	188.9
750 800	-		-	-	-		-	-	190.6		-	196.8	193.2	197.6	205.0	199.9	204.9	208.0
000	-	-	_	-	-	-	_	-	209.0	_	_	215.7	211.8	216.4	224.4	219.0	224.3	227.6

Thread size		M6			M8			M10			M12			M16			M20	
h _{ef} [mm]	30	40	60	35	44	70	42	48	80	50	65	100	64	82	120	78	100	115
Edge distance									V	0 Rd,c								
c ₁									•	Rd,c								
[mm]		[kN]																
		non-cracked concrete																
850	-	-	-	-	-	-	-	-	-	-	-	235.0	230.9	235.8	244.3	238.5	244.3	247.7
900	-	-	-	-	-	-	-	-	-	-	-	254.9	250.5	255.8	264.7	258.6	264.7	268.4
950	-	-	-	-	-	-	-	-	-	-	-	275.2	270.6	276.2	285.7	279.2	285.7	289.5
1000	-	-	-	-	-	-	-	-	-	-	-	296.0	-	-	307.1	300.3	307.1	311.2
1100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	351.3	343.8	351.3	355.8
1200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	397.3	389.0	397.3	402.3

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{\}rm 1]}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,v} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

²⁾ strength at 28 days of 150 mm cubes

c. Influence of edge distance

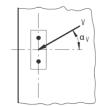
In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3} \frac{c_2}{c_1}\right) \left(0.7 + 0.3 \frac{c_2}{1.5 c_1}\right)$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹)	1	1.1	1.2	1.3	1.4	1.5
f _{c.V}	C).75	0.80	0.85	0.90	0.95	1.00

¹⁾ Distance to the second edge: $c_1 \le c_2$


d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For a \geq 90° the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	≥ 1.50
$f_{h,V}$	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

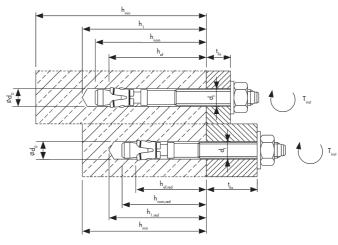
V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1]}$ This verification is not required in case of shear load with lever arm

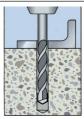
Mechanical characteristics

Thread size			M6	M6	M8	M8	M10	M10	M12	M12	M16	M16	M20	M20	
Effective ancho- rage depth	h _{ef}	[mm]	30	40	35	44	42	48	50	65	64	82	78	100	
Governing cross	Governing cross section														
Stressed cross section	A _s	[mm ²]	14.5	14.5	25.5	25.5	43.0	43.0	58.1	58.1	116.9	116.9	191.1	191.1	
Section modulus	W	[mm ³]	7.8	<i>7</i> .8	18.2	18.2	39.8	39.8	62.4	62.4	178.3	1 <i>7</i> 8.3	372.7	372.7	
Yield strength	f	[N/mm ²]	480	480	480	480	480	480	480	480	420	420	420	420	
Tensile strength	f	[N/mm ²]	600	600	600	600	600	600	600	600	560	560	560	560	
Non-cracked cor	ncrete														
Stressed cross section	A _s	[mm ²]	20.1	20.1	36.6	36.6	58.0	58.0	84.3	84.3	156.7	156.7	244.8	244.8	
Section modulus	W	[mm ³]	12.7	12.7	31.2	31.2	62.3	62.3	109.2	109.2	276.7	276.7	540.2	540.2	
Yield strength	fy	[N/mm ²]	480	480	480	480	480	480	480	480	420	420	420	420	
Tensile strength	f	[N/mm ²]	600	600	600	600	600	600	600	600	560	560	560	560	
Design bending moment	M _{Rd,s}	[Nm]	18.4	37.6	65.6	167.2	272.9	718.4	1065	1065	62.4	148.8	148.8	272.9	

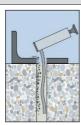

Material specifications

	W-FA/S										
Part	Steel, electroplated ≥ 40 µm acc. to EN ISO 4042:1999	Steel, hot-dip galvanized ≥ 40 μm, acc. to EN ISO 1461:2009									
Conical bolt	Cold formed or machined steel	Cold formed or machined steel									
Expansion sleeve	Steel acc. to EN 10088:2005, material No. 1.4301 or 1.4303	Steel acc. to EN 10088:2005, material No. 1.4301 or 1.4303									
Washer	Steel	Steel									
Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012	Property class 8 acc. to EN ISO 898-2:2012									

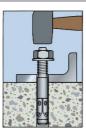
Installation parameters


Fastener size			M6	M8	M10	M12	M16	M20
Nominal drill hole diameter	d _o	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6.4	8.45	10.45	12.5	16.5	20.55
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque (Wedge Anchor B electroplated)	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque (Wedge Anchor B hot-dip galvanised)	T _{inst} =	[Nm]	-	15	30	40	90	120
Embedment depth h _{ef,1}								
Effective anchorage depth	h _{ef,1} ≥	[mm]	30	35	42	50	64	78
Depth of drill hole	h _{1,1} ≥	[mm]	45	55	65	75	95	110
Embedment depth	h _{nom,1} ≥	[mm]	39	47	56	67	84	99
Minimum thickness of member	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	S _{min}	[mm]	35	40	55	100	100	140
Minimum edge distance	C _{min}	[mm]	40	45	65	100	100	140
Embedment depth h _{ef,2}								
Effective anchorage depth	h _{ef,2} ≥	[mm]	40	44	48	65	82	100
Depth of drill hole	h _{1,2} ≥	[mm]	55	65	70	90	110	130
Embedment depth	h _{nom,2} ≥	[mm]	49	56	62	82	102	121
Minimum thickness of member	h _{min}	[mm]	100	100	100	130	170	200
Minimum spacing	S _{min}	[mm]	35	40	55	75	90	105
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125
Embedment depth h _{ef,3}								
Effective anchorage depth	h _{ef,3} ≥	[mm]	60	70	80	100	120	115
Depth of drill hole	h _{1,3} ≥	[mm]	75	91	102	125	148	145
Embedment depth	h _{nom,3} ≥	[mm]	69	82	94	11 <i>7</i>	140	136
Minimum thickness of member	h _{min}	[mm]	120	126	132	165	208	215
Minimum spacing	S _{min}	[mm]	35	40	55	75	90	105
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125

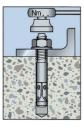
Installation instructions


A) Bore hole drilling

la. Hammer drilling (HD)


Drill the hole with a hammer drill. Drill bit diameter and its working length are determined by the diameter and depth of the drill hole of the selected anchor. (see table anchor characteristics). Positioning of drill holes without damaging the reinforcement.

B) Bore hole cleaning



2. Clean the bore hole from the bottom until the return air stream is without dust.

C) Setting the screw

3a. Drive the anchor with some hammer impacts or with the machine setting tool into the drill hole. Anchor installation ensuring the specified embedment depth.

3b. Application of the required torque moment using a calibrated torque wrench.

W-FA/A4

A4 (AISI 316): M6 - M20

W-FA/HCR

A4 (AISI 316): M8 - M20 (on demand)

Approved for:

Concrete C20/25 to C50/60, non-cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Type of installation		
Pre-positioned	In-place	Stand-off
_	✓	_

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DiBt, Berlin	EAD 330232-01-0601	ETA-02/0001 /2017-08-10
European Technical Assessment	DiBt, Berlin	ETAG 001 Part 6	ETA-06/0162 /2018-05-17
Report fire resistance	Ing. Büro Thiele, Pirmasens	EN 1363-1:2012-10 / TR 020	21730_2/2017-06-21

Basic loading data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

Mean ultimate resistance

Thread size: M6 - M10

Thread size				M6			M8			M10		
Effective anchorage depth		h _{ef}	[mm]	301)	40	60	351)	44	70	42	48	80
Non-cracked concrete												
Tension	C20/25	N _{Ru,m}	[kN]	10.2	9.5	9.5	12.4	1 <i>7</i> .5	1 <i>7</i> .5	1 <i>7</i> .5	21.4	21.4
Shear	C20/25	V _{Ru,m}	[kN]	9.1	9.1	9.1	16.7	16.7	16.7	26.4	26.4	26.4

Thread size: M12 - M20

Thread size			M12				M16			M20		
Effective anchorage depth		h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Non-cracked concrete												
Tension	C20/25	N _{Ru,m}	[kN]	22.6	27.3	27.3	34.6	48.9	48.9	46.5	67.5	67.5
Shear	C20/25	V _{Ru,m}	[kN]	38.4	38.4	38.4	65.8	65.8	65.8	102.8	102.8	102.8

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Characteristic resistance

Thread size: M6 - M10

Thread size				M6			M8			M10		
Effective anchorage depth		$h_{\rm ef}$	[mm]	301)	40	60	35 ¹⁾	44	70	42	48	80
Non-cracked concrete												
т .	C20/25	N.	[L K I]	6.5	8.0	8.0	9.0	14.4	15.0	12.0	16.4	16.4
Tension	C50/60	N _{Rk}	[kN]	10.0	10.0	10.0	14.2	18.0	18.0	19.0	25.9	25.9
Shear	≥ C20/25	V _{Rk}	[kN]	7.0	7.0	7.0	12.0	12.0	12.0	19.0	19.0	19.0

Thread size				M12		M16			M20			
Effective anchorage depth		$h_{\rm ef}$	[mm]	50	65	100	64	82	120	78	100	115
Non-cracked concrete												
Tension	C20/25	N.I.	[LA.I]	17.4	25.0	25.0	25.2	35.2	42.0	33.9	49.2	60.0
rension	C50/60	N_{Rk}	[kN]	27.5	39.5	39.5	39.8	55.7	66.4	53.6	77.8	94.9
Shear	≥ C20/25	V_{Rk}	[kN]	27.0	27.0	27.0	50.0	50.0	50.0	86.0	86.0	86.0

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Design resistance

Thread size: M6 - M10

Thread size				M6		M8			M10			
Effective anchorage depth		h _{ef}	[mm]	301)	40	60	351)	44	70	42	48	80
Non-cracked concrete												
т .	C20/25	N.	[LVI]	4.3	5.3	5.3	6.0	9.6	10.0	8.0	10.9	10.9
Tension	C50/60	N_{Rd}	[kN]	6.7	6.7	6.7	9.5	12.0	12.0	12.6	17.2	1 <i>7</i> .3
Shear	≥ C20/25	V _{Rd}	[kN]	5.4	5.6	5.6	9.6	9.6	9.6	15.2	15.2	15.2

Thread size: M12 - M20

Thread size				M12		M16			M20			
Effective anchorage depth		h _{ef}	[mm]	50	65	100	64	82	120	<i>7</i> 8	100	115
Non-cracked concrete												
T	C20/25		[kN]	11.6	16.7	16.7	16.8	23.5	28.0	22.6	32.8	40.0
Tension	C50/60 N _{Rd}	[KIN]	18.3	26.4	26.4	26.5	3 <i>7</i> .1	44.3	35.7	51.9	63.2	
Shear	≥ C20/25	V _{Rd}	[kN]	21.6	21.6	21.6	40.0	40.0	40.0	61.4	61.4	61.4

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Recommended/allowable Loads 1)

Thread size: M6 - M10

Thread size				M6				M8			M10	
Effective anchorage depth		h_{ef}	[mm]	30 ²⁾	40	60	35 ²⁾	44	70	42	48	80
Non-cracked concrete												
Tension	C20/25	N.I.	[LVI]	4.1	4.1	4.1	7.3	7.3	7.3	10.1	12.3	12.3
iension	C50/60	N _{rec}	[kN]	4.8	4.8	4.8	6.8	8.6	8.6	9.0	12.3	12.3
Shear	≥ C20/25	V _{rec}	[kN]	3.8	4.0	4.0	6.9	6.9	6.9	10.9	10.9	10.9

Thread size					M12			M16			M20	
Effective anchorage depth		$h_{\rm ef}$	[mm]	50	65	100	64	82	120	78	100	115
Non-cracked concrete												
Tension	C20/25	ПИ	[kN]	10.8	16.0	16.1	16.2	23.5	25.8	25.5	37.0	41.4
rension	C50/60		[KIN]	13.1	18.8	18.8	19.0	26.5	31.6	25.5	37.0	45.2
Shear	≥ C20/25	V _{rec}	[kN]	15.4	15.4	15.4	28.6	28.6	28.6	43.9	43.9	43.9

 $^{^{1)}}$ Material safety factor γ_{M} and safety factor for action γ_{L} = 1.4 are included. The material safety factor depends on the failure mode.

^{2]} Use restricted to anchoring of structural components that are statically indeterminate

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- · Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table
- Anchorage depths hef < 40 mm are restricted to use of structural components with which are statically interested and subject to internal exposure conditions only

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} \cdot f_{Rd,sp} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load $N_{\rm Rds}$ of a single anchor

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Design steel resistance	N _{Rd,s}	[kN]	6.7	6.7	6.7	12.0	12.0	12.0	20.0	20.0	20.0

Thread size			M12				M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	<i>7</i> 8	100	115
Design steel resistance	N _{Rd,s}	[kN]	29.3	29.3	29.3	58.7	58.7	58.7	79.8	79.8	79.8

2. Design pullout resistance

 $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

Table 2: Basic design resistance $N_{Rd,p}^0$ in case of pull-out failure of a single anchor

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	$h_{\rm ef}$	[mm]	30	40	60	35	44	70	42	48	80
Design pull-out resistance	$N_{Rd,p}^0$	[kN]	4.3	5.3	5.3	6.0	10.0	10.0	8.0	10.9	10.9

Thread size: M12 - M20

Thread size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Design pull-out resistance	N ⁰ _{Rd,p}	[kN]	11.6	16.7	16.7	16.8	23.5	28.0	22.6	32.8	40.0

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

3. Design concrete cone resistance

 $N_{Rd,c} = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

Table 4: Basic design resistance $N^0_{Rd,c}$ in case of concrete cone failure of a single anchor

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	5.4	8.3	15.2	6.8	9.6	19.2	8.9	10.9	23.5

Thread size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	11.6	17.2	32.8	16.8	24.4	43.1	22.6	32.8	40.4

²⁾ strength at 28 days of 150 mm cubes

Table 5: Characteristic edge distance $c_{c_{r,N}}$ and spacing $s_{c_{r,N}}$

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	<i>7</i> 0	42	48	80
Characteristic spacing	S _{cr, N}	[mm]	90	120	180	105	132	210	126	144	240
Characteristic edge distance	C _{cr, N}	[mm]	45	60	90	53	66	105	63	72	120

Thread size: M12 - M20

Thread size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Characteristic spacing	S _{cr, N}	[mm]	150	195	300	192	246	360	234	300	345
Characteristic edge distance	C _{cr, N}	[mm]	75	98	150	96	123	180	11 <i>7</i>	150	173

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of																				
fixing per	s/s _{cr,N} 1)	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
direction																				
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx'} f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

²⁾ strength at 28 days of 150 mm cubes

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 8: Influence of edge distance on concrete cone resistance

		,	_																
c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

4. Design splitting resistance

 $N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \le 0.3$ mm

Table 9: Design resistance $N_{Rd,sp}^0$ in case of concrete splitting failure of a single anchor

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Design splitting resistance	N ⁰ _{Rd,sp}	[mm]	4.3	5.3	5.3	6.0	9.6	10.0	8.0	10.9	10.9

Thread size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Design splitting resistance	N ⁰ _{Rd,sp}	[mm]	11.6	16.7	16.7	16.8	23.5	28.0	22.6	32.8	40.0

Table 10: Characteristic edge distance $c_{cr,sp}$ and spacing $s_{cr,sp}$

Thread size: M6 - M10

Thread size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Characteristic spacing	S _{cr, sp}	[mm]	180	160	360	180	220	240	180	240	480
Characteristic edge distance	C _{cr, sp}	[mm]	90	80	180	90	110	210	90	120	240
Minimum member thickness	h _{min}	[mm]	80	100	120	80	100	126	100	100	132

Thread size: M6 - M10

Thread size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	78	100	115
Characteristic spacing	S _{cr, sp}	[mm]	180	340	600	180	410	720	180	560	690
Characteristic edge distance	C _{cr, sp}	[mm]	90	1 <i>7</i> 0	300	90	205	360	90	280	345
Minimum member thickness	h _{min}	[mm]	100	130	165	130	1 <i>7</i> 0	208	160	200	215

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Table 111 Illinounce of control of circular	o op	9 . 00.0									
Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1\!]}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \leq 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \leq 1$$

Table 13: Influence of edge distance on splitting resistance

			-		,														
c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1, sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
Cy, sp																			

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{\scriptscriptstyle Rds}$

2. Concrete pry-out failure $V_{{\it Rd,c}} = k \cdot N_{{\it Rd,c}}$

 $\text{3. Concrete edge failure } \qquad V_{\mathit{Rd,c}} = \ V_{\mathit{Rd,c}}^{\mathit{0}} \cdot f_{\mathit{b,V}} \cdot f_{\mathit{s,V}} \cdot f_{\mathit{c2,V}} \cdot f_{\mathit{a}} \cdot f_{\mathit{h}}$

1. Design steel shear resistance

Table 15: Design value of steel resistance $V_{\rm Rd,s}$ of a single anchor

Thread size: M6 - M10

Screw size				M6			M8			M10	
Effective anchorage depth	h _{ef}	[mm]	30	40	60	35	44	70	42	48	80
Design steel resistance	$V_{\rm Rd,s}$	[kN]	5.6	5.6	5.6	9.6	9.6	9.6	15.2	15.2	15.2

Thread size: M12 - M20

Screw size				M12			M16			M20	
Effective anchorage depth	h _{ef}	[mm]	50	65	100	64	82	120	<i>7</i> 8	100	115
Design steel resistance	V _{Rd,s}	[kN]	21.6	21.6	21.6	40.0	40.0	40.0	61.4	61.4	61.4

2. Concrete pry-out resistance

 $V_{Rd,c} = k_g \cdot N_{Rd,c}$

Table 16: factor k_{s} for calculating design pry-out resistance

Thread size: M6 - M10

Screw size	Screw size						M8			M10	
Effective anchorage depth	ffective anchorage depth h _{ef} [mm]				60	35	44	70	42	48	80
Concrete pry-out resistance factor	k ₈	[-]	1.0	1.0	1.0	2.3	2.3	2.3	2.8	2.8	2.8

Screw size		M12			M16			M20			
Effective anchorage depth	h_{ef}	[mm]	50	65	100	64	82	120	78	100	115
Concrete pry-out resistance factor	k ₈	[-]	2.8	2.8	2.8	3.0	3.0	3.0	3.3	3.3	3.3

3. Concrete edge resistance

$$V_{\mathrm{Rd,c}} = V_{\mathrm{Rd,c}}^0 \cdot f_{\mathrm{b,V}} \cdot f_{\mathrm{s,V}} \cdot f_{\mathrm{c2,V}} \cdot f_{\mathrm{a}} \cdot f_{\mathrm{h}}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V^{o}_{_{Rd,c}}$ in case of concrete edge failure

Thread size		M6			M8			M10			M12			M16			M20	
h _{ef} [mm]	30	40	60	35	44	70	42	48	80	50	65	100	64	82	120	78	100	115
Edge distance										0								
c ₁									٧	0 Rd,c								
[mm]									[k	:N]								
								n	on-crack	ed concr	ete							
40	2.7	2.8	3.0	-	-		-		-		-		-		-		-	
45	3.1	3.3	3.5	-	3.5	3.8	-	-	-	-	-	-	-	-	-	-	-	-
50	3.6	3.8	4.0	-	4.0	4.3	-	-	-	-	-	-	-	-	-	-	-	-
55	4.1	4.3	4.6	-	4.5	4.9	-	4.8	5.3	-	-	-	-	-	-	-	-	-
60	4.7	4.9	5.2	4.9	5.1	5.5	-	5.4	5.9	-	-	-	-	-	-	-	-	-
65	5.2	5.4	5.7	5.5	5.7	6.2	5.8	6.0	6.5	-	-	-	-	-	-	-	-	-
70	5.8	6.0	6.4	6.1	6.3	6.8	6.5	6.6	7.2	-	<i>7</i> .1	7.8	-	-	-	-	-	-
75	6.4	6.6	7.0	6.7	6.9	7.5	<i>7</i> .1	7.2	7.9	-	7.8	8.5	-	-	-	-	-	-
80	7.0	7.2	7.6	7.4	7.6	8.1	7.7	7.9	8.6	-	8.5	9.3	-	9.3	10.2	-	-	-
85	7.6	7.9	8.3	8.0	8.2	8.8	8.4	8.6	9.3	-	9.2	10.0	-	10.1	11.0	-	-	-
90	8.3	8.5	9.0	8.7	8.9	9.5	9.1	9.3	10.1	-	10.0	10.8	-	10.9	11.8	-	-	-
95	8.9	9.2	9.7	9.3	9.6	10.3	9.8	10.0	10.8	-	10.7	11.6	-	11.7	12.7	-	-	-
100	9.6	9.9	10.4	10.0	10.3	11.0	10.5	10.7	11.6	11.0	11.5	12.4	-	12.5	13.5	-	13.5	13.9
110	11.0	11.3	11.8	11.5	11.8	12.5	12.0	12.2	13.2	12.5	13.1	14.1	13.5	14.2	15.3	-	15.2	15.7
120	12.4	12.8	13.4	12.9	13.3	14.1	13.5	13.8	14.8	14.1	14.7	15.8	15.2	15.9	1 <i>7</i> .1	-	1 <i>7</i> .1	17.6
130	13.9	14.3	14.9	14.5	14.9	15.8	15.1	15.4	16.5	15.8	16.4	17.6	16.9	17.7	19.0	-	18.9	19.5
140	15.4	15.9	16.6	16.1	16.5	17.4	16.8	17.0	18.3	17.5	18.1	19.4	18.7	19.5	20.9	19.9	20.9	21.4
150	17.0	17.5	18.3	17.7	18.2	19.2	18.5	18.8	20.1	19.2	19.9	21.3	20.6	21.4	22.9	21.8	22.8	23.5
160	18. <i>7</i>	19.2	20.0	19.4	19.9	21.0	20.2	20.5	21.9	21.0	21.8	23.2	22.4	23.3	24.9	23.8	24.9	25.5
170	20.4	20.9	21.8	21.1	21.6	22.8	22.0	22.3	23.8	22.8	23.6	25.2	24.4	25.3	27.0	25.8	26.9	27.6
180	22.1	22.7	23.6	22.9	23.5	24.7	23.8	24.2	25.8	24.7	25.6	27.2	26.3	27.3	29.1	27.9	29.1	29.8
190	23.9	24.5	25.4	24.7	25.3	26.6	25.7	26.1	27.8	26.7	27.6	29.3	28.4	29.4	31.3	30.0	31.2	32.0
200	25.7	26.3	27.4	26.6	27.2	28.6	27.6	28.0	29.8	28.6	29.6	31.4	30.4	31.5	33.5	32.1	33.4	34.3
250	35.4	36.2	37.5	36.6	37.3	39.1	37.8	38.3	40.6	39.1	40.3	42.5	41.4	42.8	45.2	43.5	45.1	46.1
300	46.0	47.0	48.6	47.4	48.4	50.5	49.0	49.6	52.3	50.5	52.0	54.7	53.3	54.9	57.8	55.8	57.8	59.0
350	57.4	58.6	60.5	59.1	60.2	62.8	61.0	61.7	64.9	62.8	64.5	67.7	66.0	68.0	71.4	69.0	71.3	72.7
400	-	71.0	73.2	71.6	72.9	75.8	73.7	74.6	78.2	75.9	77.8	81.4	79.6	81.8	85. <i>7</i>	83.0	85.6	87.2
450	-	-	86.7	84.8	86.3	89.6	87.3	88.2	92.4	89.7	91.9	96.0	93.9	96.4	100.8	97.8	100.7	102.5
500	-	-	100.8	-	-	104.1	101.5	102.6	107.2	104.2	106.7	111.2	108.9	111.7	116.6	113.2	116.5	118.5
550	-	-	115.6	-	-	119.3	116.3	117.5	122.7	119.3	122.1	127.1	124.5	127.6	133.0	129.3	133.0	135.2
600	-	-	131.0	-	-	135.1	131.8	133.1	138.8	135.1	138.1	143.7	140.8	144.2	150.1	146.1	150.1	152.5
650	-	-	-	-	-	151.4	-	-	155.5	151.5	154.8	160.8	157.7	161.4	167.8	163.5	167.8	170.4
700	-	-	-	-	-	168.4	-	-	172.8	168.4	172.0	178.5	175.2	179.2	186.1	181.4	186.1	188.9
750	-	-	-	-	-	-	-	-	190.6	-	-	196.8	193.2	197.6	205.0	199.9	204.9	208.0
800	-	-	-	-	-	-	-	-	209.0	-	-	215.7	211.8	216.4	224.4	219.0	224.3	227.6

Thread size		M6			M8			M10			M12			M16			M20	
h _{ef} [mm]	30	40	60	35	44	70	42	48	80	50	65	100	64	82	120	78	100	115
Edge distance									V	0 Rd,c								
c ₁										Rd,c								
[mm]		[kN]																
		non-cracked concrete																
850	-	-	-	-	-	-	-	-	-	-	-	235.0	230.9	235.8	244.3	238.5	244.3	247.7
900	-	-	-	-	-	-	-	-	-	-	-	254.9	250.5	255.8	264.7	258.6	264.7	268.4
950	-	-	-	-	-	-	-	-	-	-	-	275.2	270.6	276.2	285.7	279.2	285.7	289.5
1000	-	-	-	-	-	-	-	-	-	-	-	296.0	-	-	307.1	300.3	307.1	311.2
1100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	351.3	343.8	351.3	355.8
1200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	397.3	389.0	397.3	402.3

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1]}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,v} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

²⁾ strength at 28 days of 150 mm cubes

c. Influence of edge distance

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3} \frac{c_2}{c_1}\right) \left(0.7 + 0.3 \frac{c_2}{1.5 c_1}\right)$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

¹⁾ Distance to the second edge: $c_1 \le c_2$

d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
f _{a,V}	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

						•									
h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	≥ 1.50
fhv	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

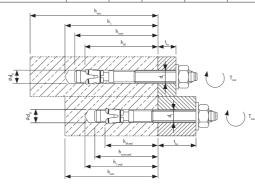
V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

 $^{^{\}rm 1)}$ This verification is not required in case of shear load with lever arm

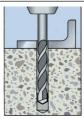
Mechanical characteristics

Thread size			M6	M6	M8	M8	M10	M10	M12	M12	M16	M16	M20	M20	
Effective anchorage depth	h _{ef}	[mm]	30	40	35	44	42	48	50	65	64	82	78	100	
Governing cro	ss sec	tion													
Stressed cross section	A _s	[mm ²]	14.5	14.5	25.5	25.5	43.0	43.0	58.1	58.1	116.9	116.9	191.1	191.1	
Section modulus	W	[mm ³]	7.8	7.8	18.2	18.2	39.8	39.8	62.4	62.4	178.3	178.3	372.7	372.7	
Yield strength	f	[N/mm ²]	560	560	560	560	5600	560	600	600	600	600	560	560	
Tensile strength	f	[N/mm ²]	700	700	700	700	700	700	750	750	750	750	700	700	
Non-cracked c	Non-cracked concrete														
Stressed cross section	A _s	[mm ²]	20.1	20.1	36.6	36.6	58.0	58.0	84.3	84.3	156.7	156.7	244.8	244.8	
Section modulus	W	[mm ³]	12.7	12.7	31.23	31.23	62.3	62.3	109.17	109.17	276.67	276.67	540.23	540.23	
Yield strength	f	[N/mm ²]	480	480	480	480	480	480	480	480	420	420	420	420	
Tensile strength	f	[N/mm ²]	600	600	600	600	600	600	600	600	560	560	560	560	
Design bending moment	M ^o _{Rd,s}	[Nm]	18.4	37.6	65.6	167.2	272.9	718.4	1065	1065	62.4	148.8	148.8	272.9	


Material specifications

	W-FA/A4;	W-FA/HCR
Part	Stainless steel A4	High corrosion resistant steel HCR
Conical bolt	Stainless steel 1.4401, 1.4404, 1.4571, 1.4578, 1.4362, EN 10088:2005, coated	High corrosion resistant steel 1.4529, 1.4565, EN 10088:2005, coated
Expansion sleeve	Stainless steel 1.4401, 1.4571, 1.43	62, EN 10088:2005
Washer	Stainless steel 1.4401, 1.4571, 1.4362, EN 10088:2005	High corrosion resistant steel 1.4529, 1.4565, EN 10088:2005, coated
Hexagon nut	ISO 3506:2009, A4-70, stainless steel 1.4401, 1.4571, 1.4362, EN 10088:2005, coated	ISO 3506:2009, strength class 70, high corrosion resistant steel 1.4529, 1.4565, EN 10088:2005, coated

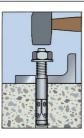
Installation parameters


Fastener size			M6	M8	M10	M12	M16	M20
Nominal drill hole diameter	d _o	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,4	8,45	10,45	12,5	16,5	20,55
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque (Wedge Anchor B electroplated)	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque (Wedge Anchor B hot-dip galvanised)	T _{inst} =	[Nm]	-	15	30	40	90	120
Embedment depth h _{ef,1}								
Effective anchorage depth	h _{ef,1} ≥	[mm]	30	35	42	50	64	78
Depth of drill hole	h _{1,1} ≥	[mm]	45	55	65	75	95	110
Embedment depth	h _{nom,1} ≥	[mm]	39	47	56	67	84	99
Minimum thickness of member	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	S _{min}	[mm]	35	60	55	100	100	140
Minimum edge distance	C _{min}	[mm]	40	60	65	100	110	140
Embedment depth h _{ef,2}								
Effective anchorage depth	h _{ef,2} ≥	[mm]	40	44	48	65	80	100
Depth of drill hole	h _{1,2} ≥	[mm]	55	65	70	90	110	130
Embedment depth	h _{nom,2} ≥	[mm]	49	56	62	82	102	121
Minimum thickness of member	h _{min}	[mm]	100	100	100	130	160	200
Minimum on only	S _{min}	[mm]	35	35	45	60	80	100
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	150
Add to the least	C _{min}	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180
Embedment depth h _{ef,3}								
Effective anchorage depth	h _{ef,3} ≥	[mm]	60	70	80	100	120	115
Depth of drill hole	h _{1,3} ≥	[mm]	75	91	102	125	148	145
Embedment depth	h _{nom,3} ≥	[mm]	69	82	94	11 <i>7</i>	140	136
Minimum thickness of member	h _{min}	[mm]	120	126	132	165	200	215
Minimum	S _{min}	[mm]	35	35	45	60	80	100
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	1050
Are to the	C _{min}	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180

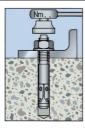
Installation instructions

A) Bore hole drilling

la. Hammer drilling (HD)


Drill the hole with a hammer drill. Drill bit diameter and its working length are determined by the diameter and depth of the drill hole of the selected anchor. (see table anchor characteristics). Positioning of drill holes without damaging the reinforcement.

B) Bore hole cleaning



2. Clean the bore hole from the bottom until the return air stream is without dust.

C) Setting the screw

3a. Drive the anchor with some hammer impacts or with the machine setting tool into the drill hole. Anchor installation ensuring the specified embedment depth.

3b. Application of the required torque moment using a calibrated torque wrench.

Galvanized (5 microns): M6 - M20

Approved for:

Concrete C20/25 to C50/60, non-cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Type of installation		
Pre-positioned	In-place	Stand-off
	-	-

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DiBt, Berlin	ETAG 001 Part 4	ETA-02/0044 / 2016-03-01
European Technical Assessment	DiBt, Berlin	ETAG 001 Part 6	ETA-05/0120 / 2017-02-14
Expert's Opinion tension load capacity in hollow slabs	Ing. Büro Thiele, Pirmasens		21732_2 / 2017-06-26
Expert's Opinion tension load capacity in COBIAX hollow slabs	MFPA Leipzig	TRO20 ; DIN EN 1992-1-2:2010-12	GS 3.2/17-249-1 / 2017- 07-31
Evaluation report fire resistance	Ing. Büro Thiele, Pirmasens	EN 1363-1:2012-10 / TR 020	21741_2 / 2017-08-12

Basic loading data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material specification table
- Concrete C 20/25, f_{ck} = 20 N/mm²
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

Mean ultimate resistance

Thread size				M6×30 1)	M8×30 1)	M8x40	M10×30 1)	M10×40	M12x50	M12×80	M16x65 M16x80	M 20×80
Effective and	chorage	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Non-crack	ced concret	е										
Tension	C20/25	N _{Ru,m}	[kN]	12.1	11.3	14.3	12.7	18.0	25.3	25.3	37.9	50.2
Shear	C20/25	V _{Ru,m}	[kN]	5.9	12.6	14.5	12.8	9.9	27.7	27.7	56.9	72.4

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Characteristic resistance

Thread size				M6×30 1)	M8×30 1)	M8x40	M10x30 1)	M10×40	M12x50	M12x80	M16x65 M16x80	
Effective and	horage	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Non-crack	ed concret	е										
т .	C20/25	l N	[[]]	8.1	8.1	9.0	8.1	12.4	17.4	17.4	25.8	35.2
Tension	C50/60	N _{Rk}	[kN]	10.0	12.8	14.2	12.8	19.7	27.5	27.5	40.8	55.7
Shear	C20/25		[kN]	5.0	6.9	6.9	8.1	7.2	19.4	21.1	33.5	53.2
Snear	C50/60	V _{Rk}	[KIN]	5.0	6.9	6.9	10.1	7.2	19.4	21.1	33.5	53.2

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Design resistance

Thread size				M6x30 1)	M8×30 1)	M8x40	M10x30 ¹⁾	M10×40	M12x50	M12x80	M16x65 M16x80	
Effective anch	norage	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Non-crack	ed concret	е										
.	C20/25		[[]]	4.5	4.5	5.0	4.5	6.9	9.7	9.7	14.3	19.6
Tension	C50/60	N _{Rd}	[kN]	6.7	<i>7</i> .1	7.9	<i>7</i> .1	10.9	15.3	15.3	22.6	30.9
Cl	C20/25		FI N II	4.0	4.5	5.5	4.5	5.8	14.5	14.5	25.2	39.1
Shear	C50/60	V _{Rd}	[kN]	4.0	5.5	5.5	<i>7</i> .1	5.8	15.5	16.9	25.2	40.0

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Recommended/allowable loads 2)

Thread size				M6x30 1)	M8×30 1)	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x80	M16x65 M16x80	M 20×80
Effective and	norage	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Non-crack	ed concret	е										
Tension	C20/25	N	[kN]	3.2	3.2	3.6	3.2	4.9	6.9	6.9	10.2	14.0
rension	C50/60	IN	[KIN]	4.8	5.1	5.6	5.1	<i>7</i> .8	10.9	10.9	16.2	22.1
cl	C20/25	V	EL N II	2.9	3.2	3.9	3.2	4.1	10.4	10.4	18.0	27.9
Shear	C50/60	V	[kN]	2.9	3.9	3.9	5.1	4.1	11.1	12.1	18.0	28.6

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate.

 $^{^{2)}}$ Material safety factor γ_M and safety factor for action γ_L = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table
- Anchorage depths hef < 40 mm are restricted to use of structural components with which are statically interested and subject to internal exposure conditions only

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} \cdot f_{Rd,sp} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load $N_{\rm Rds}$ of a single anchor

Thread size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50		M16x65 M16x80	
Effective anchorage depth	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Design steel resistance	N _{Rd,s}	[kN]	6.7	11. <i>7</i>	12.2	12.0	13.5	26.8	28.1	41.9	66.5

2. Design pullout resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$$

Table 2: Basic design resistance No. in case of pull-out failure of a single anchor

Thread size			M6x30	M8x30	M8x40	M10x30	M10×40	M12x50		M16x65 M16x80	M20×80
Effective anchorage depth	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Design pull-out resistance	$N_{Rd,p}^0$	[kN]	4.5	4.5	5.0	4.5	6.9	9.7	9.7	14.3	19.6

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1)}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

3. Design concrete cone resistance

$$N_{Rd,c} \ = N_{Rd,c}^{0} \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance $N^0_{Rd,c}$ in case of concrete cone failure of a single anchor

Thread size			M6x30	M8x30	M8×40	M10x30	M10x40	M12x50		M16x65 M16x80	
Effective anchorage depth	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Design concrete cone resistance	N ⁰ _{Rd,c}	[kN]	4.5	4.5	6.9	4.5	6.9	9.7	9.7	14.3	19.6

²⁾ strength at 28 days of 150 mm cubes

Table 5: Characteristic edge distance c_{qN} and spacing s_{qN}

Thread size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65 M16x80	
Effective anchorage depth	$h_{\rm ef}$	[mm]	30	30	40	30	40	50	50	65	80
Characteristic spacing	S _{cr,N}	[mm]	90	90	120	90	120	150	150	195	240
Characteristic edge distance	C _{cr,N}	[mm]	45	45	60	45	60	75	75	98	120

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{S_{x(y)}}{S_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	$f_{sx'}f_{sy}$	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f _{sx} , f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx'} f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacings, when there are different spacings in one row

²⁾ strength at 28 days of 150 mm cubes

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1$$
 $f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$

Table 8: Influence of edge distance on concrete cone resistance

		,	_																
c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

4. Design splitting resistance

 $N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \le 0.3$ mm

Table 9: Design resistance $N_{Rd,sp}^0$ in case of concrete splitting failure of a single anchor

Thread size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x 65/80	M20x80
Effective anchorage depth	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Non-cracked concrete											
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	4.5	4.5	5.0	4.5	6.9	9.7	9.7	14.3	19.6

Table 10: Characteristic edge distance $c_{cr.sp}$ and spacing $s_{cr.s}$

Thread size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x 65/80	M20×80
Effective anchorage depth	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Characteristic spacing	S _{cr, sp}	[mm]	190	190	190	230	270	330	330	400	520
Characteristic edge distance	C _{cr, sp}	[mm]	95	95	95	115	135	165	165	200	260
Minimum member thickness	h _{min}	[mm]	100	100	100	120	120	130	130	160	200

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1]}}$ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 13: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max \left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{p,q}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

3. Concrete edge failure $V_{Rd,c} = V_{Rd,c}^0 \cdot f_{b,V} \cdot f_{s,V} \cdot f_{s,V} \cdot f_{c2,V} \cdot f_a \cdot f_h$

1. Design steel shear resistance

Table 15: Design value of steel resistance $V_{Rd,s}$ of a single anchor

Thread size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x 65/80	M20×80
Effective anchorage depth	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Design steel resistance	V _{Rd,s}	[mm]	4.0	5.5	5.5	8.1	5.8	15.5	16.9	25.2	40.0

2. Concrete pry-out resistance

$$V_{Rd,c} = k_8 \cdot N_{Rd,c}$$

Table 16: factor $k_{\rm g}$ for calculating design pry-out resistance

Thread size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x 65/80	M20×80
Effective anchorage depth	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Concrete pry-out resistance factor	k ₈	[-]	1.0	1.0	1.0	1.0	1.0	1.5	1.5	2.0	2.0

3. Concrete edge resistance

$$V_{Rd,c} = V_{Rd,c}^{0} \cdot f_{b,V} \cdot f_{s,V} \cdot f_{c2,V} \cdot f_{a} \cdot f_{h}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V_{0,1}^0$ in case of concrete edge failure

Thread size	M6x30	M8x30	M8x40	M10x30	M10×40	M12x50	M12x80	M16x 65/80	M20x80
h _{ef} [mm]	30	30	40	30	40	50	50	65	80
Edge distance c ₁					$V_{\rm Rd,c}^{\rm O}$				
[mm]				-	[kN]	-			
				r	non-cracked concr	ete			
95	9,2	9,4	9,7	_	_	-	-	-	-
100	9,8	10,1	10,4	-	-	-	-	-	-
110	11,3	11,5	11,9	-	-	-	-	-	-
120	12,7	13,0	13,4	13,2	-	-	-	-	-
130	14,2	14,5	15,0	14,8	-	-	-	-	-
140	15,8	16,1	16,7	16,4	17,0	-	-	-	-
150	17,4	17,8	18,3	18,0	18,7	-	-	-	-
160	19,1	19,5	20,1	19,7	20,4	-	-	-	-
170	20,8	21,2	21,9	21,5	22,2	23,4	23,4	-	-
180	22,6	23,0	23,7	23,3	24,1	25,3	25,3	-	-
190	24,4	24,8	25,6	25,2	26,0	27,2	27,2	-	-
200	26,2	26,7	27,5	27,0	27,9	29,3	29,3	31,2	-
250	36,1	36,6	37,6	37,1	38,2	39,9	39,9	42,4	-
300	46,8	47,5	48,8	48,1	49,4	51,5	51,5	54,5	57,3
350	58,4	59,2	60,7	59,9	61,5	63,9	63,9	67,5	70,8
400	70,8	71,7	73,4	72,5	74,4	77,2	77,2	81,2	85,0
450	83,9	85,0	86,9	85,9	87,9	91,1	91,1	95,8	100,0
500	-	98,9	101,1	99,9	102,2	105,8	105,8	111,0	115,8
550	-	113,5	115,9	114,6	117,2	121,1	121,1	126,9	132,1
600	-	128,6	131,3	129,9	132,7	137,1	137,1	143,4	149,2
650	-	-	-	145,8	148,9	153,7	153,7	160,5	166,8
700	-	-	-	162,2	165,6	170,8	170,8	178,2	185,0
750	-	-	-	-	-	188,5	188,5	196,5	203,8
800	-	-	-	-	-	206,7	206,7	215,3	223,2
850	-	-	-	-	-	225,5	225,5	234,6	243,0
900	-	-	-	-	-	244,7	244,7	254,5	263,4
950	-	-	-	-	-	-	-	274,8	284,3
1000	-	-	-	-	-	-	-	295,6	305,6
1100	-	-	-	-	-	-	-	338,6	349,7
1200		-	-	-	-	-	-	383,4	395,6
1300		-	-	-	-	-	-	-	443,2
1400		-	-	-	-	-	-		492,4
1500			-	-	-		-	-	543,2

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \leq 2$$

Table 19: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of edge distance

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

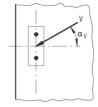
$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3} \frac{c_2}{c_1}\right) \left(0.7 + 0.3 \frac{c_2}{1.5 c_1}\right)$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

¹⁾ Distance to the second edge: $c_1 \le c_2$

²⁾ strength at 28 days of 150 mm cubes


d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

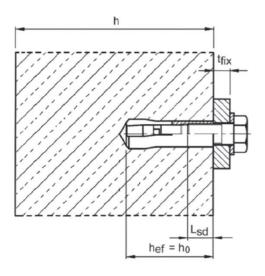
V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener ¹⁾	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

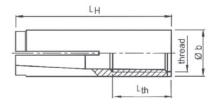
 $^{^{\}mbox{\tiny 1]}}$ This verification is not required in case of shear load with lever arm

Mechanical characteristics

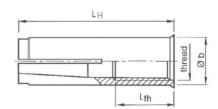
Thread size	M6x30	M8×30	M8×40	M10x30	M10×40	M12x50	M12x80	M16x65 M16x80			
Screw											
Stressed cross section	A _s	[mm ²]	20.1	36.6	36.6	58.0	58.0	84.3	84.3	156.7	244.8
Section modulus	W	[mm ³]	12.7	31.2	31.2	62.3	62.3	109.1	109.1	276.6	540.2
Design bending moment (steel 4.6)	M ^O _{Rd,s}	[Nm]	3.7	9	9	17.9	17.9	31.4	31.4	79.7	155.6
Design bending moment (steel 5.6)	M ^O _{Rd,s}	[Nm]	4.6	11.2	11.2	22.4	22.4	39.3	39.3	99.6	194.5
Design bending moment (steel 5.8)	M ^O _{Rd,s}	[Nm]	6.1	15.0	15.0	29.9	29.9	52.4	52.4	132.8	259.3
Design bending moment (steel 8.8)	M ^O _{Rd,s}	[Nm]	9.8	24.0	24.0	47.8	47.8	83.8	83.8	212.4	414.9
Sleeve											
Stressed cross section	A _s	[mm ²]	25.0	33.2	33.2	42.0	42.0	71.7	71.7	119.7	190.0
Section modulus	W	[mm ³]	37.5	65.5	65.5	102.7	102.7	212.2	212.2	473.9	940.7
Yield strength	f _{yk}	[N/ mm²]	480	480	480	384	384	480	480	420	420
Tensile strength	f _{uk}	[N/ mm²]	600	600	600	480	480	600	600	560	560
Design bending moment	M _{Rd,s}	[Nm]	21.6	37.7	37.7	47.3	47.3	122.3	122.3	238.8	474.1


Material specifications

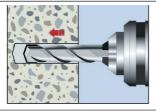
Part	Steel, zinc plated							
Anchor sleeve	Cold formed or machining steel, zinc plated, EN ISO 4042:1999							
Cone	Steel for cold forming acc. to EN 10263-2:2001							



Installation parameters


Thread size			M6x30	M8x30	M8x40	M10x30	M10×40	M12x50	M12x80	M16x65	M16x80	M20x80
Depth of drill hole	h _o	[mm]	30	30	40	30	40	50	80	65	80	80
Nominal drill hole diameter	d _o	[mm]	8	10	10	12	12	15	15	20	20	25
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8.45	10.45	10.45	12.5	12.5	15.5	15.5	20.55	20.55	25.55
Installation torque	T _{inst} ≤	[Nm]	4	8	8	15	15	35	35	60	60	120
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	7	9	9	12	12	14	14	18	18	22
Available thread length	L _{th}	[mm]	13	13	20	12	15	18	45	23	38	34
Minimum screw-in depth	L _{sd,min}	[mm]	7	9	9	10	11	13	13	18	18	22
Minimum thick- ness of member	h _{min}	[mm]	100	100	100	120	120	130	130	160	160	200
Minimum spacing	S _{min}	[mm]	55	60	80	100	100	120	120	150	150	160
Minimum edge distance	C _{min}	[mm]	95	95	95	115	135	165	165	200	200	260

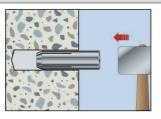
Anchor version without shoulder


Anchor version with shoulder Type BND

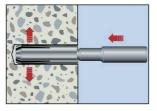
Installation instructions

A) Bore hole drilling

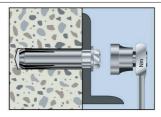
1a. Hammer (HD) or compressed air drilling (CD)


Drill the hole with a hammer drill. Drill bit diameter and its working length are determined by the diameter and depth of the drill hole of the selected anchor.

B) Bore hole cleaning



2. Clean the bore hole from the bottom until the return air stream is dust free.


C) Setting the screw

3a. Drive the anchor with some hammer strike or with the machine setting tool into the drill hole. Ensure the specified embedment depth.

3b. Drive in cone by using setting tool. Shoulder of setting tool must fit on anchor rim.

3c. Apply the required torque moment using a calibrated torque wrench.

Stainless Steel - A4 (AISI 316): M6-M20

Approved for:

Concrete C20/25 to C50/60, non-cracked

Suitable for:

Concrete C12/15, Natural stone with dense structure

Type of installation		
Pre-positioned	In-place	Stand-off
✓	-	-

Applications

Approvals and certificates

Description	Authority/laboratory	Guideline for assessment	No./date of issue
European Technical Assessment	DiBt, Berlin	ETAG 001 Part 4	ETA-02/0044 / 2016-03-01
European Technical Assessment	DiBt, Berlin	ETAG 001 Part 6	ETA-05/0120 / 2017-02-14
Expert's Opinion tension load capacity in hollow slabs	Ing. Büro Thiele, Pirmasens		21732_2 / 2017-06-26
Expert's Opinion tension load capacity in COBIAX hollow slabs	MFPA Leipzig	TRO20 ; DIN EN 1992-1-2:2010-12	GS 3.2/17-249-1 / 2017- 07-31
Evaluation report fire resistance	Ing. Büro Thiele, Pirmasens	EN 1363-1:2012-10 / TR 020	21741_2 / 2017-08-12

Basic loading data (for a single anchor)

All data in this section applies when:

- Installation is correct (see installation instructions)
- No edge distance and spacing influence
- Base material thickness is according to anchor characteristics
- Anchor material is as specified in anchor material s pecification table
- Concrete C 20/25, $f_{ck} = 20 \text{ N/mm}^2$
- Concrete C 50/60, $f_{ck} = 60 \text{ N/mm}^2$

Mean ultimate resistance

Thread size				M6×30 1)	M8×30 1)	M8×40	M10x40 ¹⁾	M12x50 M12x80	M16x65 M16x80	M20×80	
Effective anch	norage	h _{ef}	[mm]	30	30	40	40	50	65	80	
Non-cracke	Non-cracked concrete										
Tension	C20/25	N _{Ru,m}	[kN]	11.1	13.3	16.4	18.7	27.0	37.6	58.9	
Shear	C20/25	V _{Ru,m}	[kN]	8.5	11.6	12.1	15.9	28.6	45.0	83.7	

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Characteristic resistance

Thread size				M6×30 1)	M8x30 1)	M8x40	M10x40 1)	M12x50 M12x80	M16x65 M16x80	M20x80
Effective and	horage	h _{ef}	[mm]	30	30	40	40	50	65	80
Non-crack	Non-cracked concrete									
т .	C20/25		[LVI]	8.1	8.1	9.0	12.4	17.4	25.8	35.2
Tension	C50/60	N _{Rk}	[kN]	12.8	12.8	14.2	19.7	27.5	40.8	55.7
Shear	C20/25		[] []	7.0	10.6	10.6	13.4	25.1	41.9	66.5
Snear	C50/60	V _{Rk}	[kN]	7.0	10.6	10.6	13.4	25.1	41.9	66.5

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Design resistance

Thread size				M6×30 1)	M8×30 1)	M8x40	M10x40 ¹⁾	M12x50 M12x80	M16x65 M16x80	M20x80
Effective and depth	horage	h _{ef}	[mm]	30	30	40	40	50	65	80
Non-cracked concrete										
T .	C20/25		[LV1]	5.4	5.4	6.0	8.3	11.6	17.2	23.5
Tension	C50/60	N _{Rd}	[kN]	7.5	8.5	9.5	13.1	18.3	27.2	3 <i>7</i> .1
Cl	C20/25	.,	V _{Rd} [kN]	4.5	6.8	6.8	8.6	16.1	26.9	42.6
Shear	C50/60	V _{Rd}		4.5	6.8	6.8	8.6	16.1	26.9	42.6

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate

Recommended/allowable loads 2)

Thread size				M6×30 1)	M8×30 1)	M8x40	M10x40 1)	M12x50 M12x80	M16x65 M16x80	M20x80	
Effective and depth	horage	h _{ef}	[mm]	30	30	40	40	50	65	80	
Non-cracked concrete											
.	C20/25		N _{rec} [kN]	3.8	3.8	4.3	5.9	8.3	12.3	16.8	
Tension	C50/60	N _{rec} [kN]		[kN]	5.4	6.1	6.8	9.4	13.1	19.4	26.5
Cl	C20/25	V	\/ [I.N.I]	3.2	4.9	4.9	6.1	11.5	19.2	30.4	
Shear	C50/60	rec	[kN]	3.2	4.9	4.9	6.1	11.5	19.2	30.4	

¹⁾ Use restricted to anchoring of structural components that are statically indeterminate.

 $^{^{2}l}$ Material safety factor γ_M and safety factor for action γ_L = 1.4 are included. The material safety factor depends on the failure mode.

Design method (simplified)

Simplified version of the design method according to Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete (EN 1992-4):

- · Influence factors related to concrete strength, edge distance, spacing and others must be considered when applicable
- Valid for a group of anchors. The influencing factors must then be considered for each edge distance and spacing. The
 calculated design resistances are on the safe side. They will be lower than the exact values according to EN 1992-4.
 For an economical optimization, we recommend using the anchor design module of the Würth Technical Software II
- The design method is based on the simplification that no different loads are acting on individual anchors (no eccentricity)
- Concrete strength for design load values is C20/25 unless stated otherwise
- · Dry or wet conditions of drill hole, hammer drilling
- Anchor material as specified in anchor material specification table
- Anchorage depths hef < 40 mm are restricted to use of structural components with which are statically interested and subject to internal exposure conditions only

I. Tension loading

The decisive design resistance in tension is the lowest value of the following failure modes:

1. Steel failure $N_{Rd,s}$

2. Pull-out failure $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$

3. Concrete cone failure $N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$

4. Concrete splitting failure $N_{Rd,sp} \cdot f_{Rd,sp} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

1. Design steel tensile resistance

Table 1: Design value of steel resistance under tension load N_{Rds} of a single anchor

Thread size			M6×30	M8×30	M8x40	M10×40	M12x50 M12x80	M16x65 M16x80	M20x80
Effective anchorage depth	h _{ef}	[mm]	30	30	40	40	50	65	80
Design Steel resistance	N _{Rd,s}	[kN]	7.5	12.5	12.5	15.7	26.8	44.8	<i>7</i> 1.1

2. Design pullout resistance

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,N}$$

Table 2: Basic design resistance N_{Rdp}° in case of pull-out failure of a single anchor

Thread size			M6x30	M8x30	M8x40	M10x40	M12x50	M16x65	M20x80
							M12x80	M16x80	
Effective anchorage depth	h _{ef}	[mm]	30	30	40	40	50	65	80
Design pull-out resistance	$N_{Rd,p}^0$	[kN]	5.4	5.4	6.0	8.3	11.6	17.2	23.5

a. Influence of concrete strength

Table 3: Influence of concrete strength on pull-out resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

3. Design Concrete Cone Resistance

$$N_{Rd,c} = N_{Rd,c}^0 \cdot f_{b,N} \cdot f_{sx} \cdot f_{sy} \cdot f_{cx,1} \cdot f_{cx,2} \cdot f_{cy}$$

Table 4: Basic design resistance $N_{p,l}^0$ in case of concrete cone failure of a single anchor

•		Ka,c				•			
Thread size			M6x30	M8x30	M8x40	M10x40	M12x50	M16x65	M20x80
							M12x80	M16x80	
Effective anchorage depth	h _{ef}	[mm]	30	30	40	40	50	65	80
Design concrete cone resistance	N _{Rd,c}	[kN]	5.4	5.4	8.3	8.3	11.6	17.2	23.5

Table 5: Characteristic edge distance $c_{\scriptscriptstyle cr,N}$ and spacing $s_{\scriptscriptstyle cr,N}$

Thread size			M6x30	M8x30	M8x40	M10x40	M12x50	M16x65	M20x80
							M12x80	M16x80	
Effective anchorage depth	h _{ef}	[mm]	30	30	40	40	50	65	80
Characteristic spacing	S _{cr,N}	[mm]	90	90	120	120	150	195	240
Characteristic edge distance	C _{cr,N}	[mm]	45	45	60	60	75	98	120

²⁾ strength at 28 days of 150 mm cubes

a. Influence of concrete strength

Table 6: Influence of concrete strength on concrete cone resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	f _{b,N}	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

$$f_{sx} = f_{sy} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,N}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 7: Influence of spacing on concrete cone resistance

Number of fixing per direction	s/s _{cr,N} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f _{sx} , f _{sy}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f _{sx} , f _{sy}	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
	f _{sx} , f _{sy}	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f _{sx} , f _{sy}	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

 $^{^{1)}}$ Choose always the lowest value of the spacings, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1} = 0.7 + 0.3 \frac{c_x}{c_{cr,N}} \le 1 \qquad \qquad f_{cx,2} = f_{cy} = \left(1 + \frac{c_{x(y)}}{c_{cr,N}}\right) \cdot \frac{1}{2} \le 1$$

Table 8: Influence of edge distance on concrete cone resistance

			_																
c/c _{cr,N}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

²⁾ strength at 28 days of 150 mm cubes

4. Design splitting resistance

 $N_{Rd,sp} = N_{Rd,sp}^{0} \cdot f_{b,N} \cdot f_{sx,sp} \cdot f_{sy,sp} \cdot f_{cx,1,sp} \cdot f_{cx,2,sp} \cdot f_{cy,sp} \cdot f_{h}$

No verification of splitting is required if at least one of the conditions is fulfilled:

- a) The edge distance in all directions is $c \ge c_{cr,sp}$ for single fasteners and $c \ge 1.2$ $c_{cr,sp}$ for fastener groups and the member depth is $h \ge h_{min}$ in both cases
- b) The characteristic resistance for concrete cone failure and pull-out failure is calculated for cracked concrete and reinforcement resists the splitting forces and limits the crack width to $w_{\nu} \le 0.3$ mm

Table 9: Design resistance $N_{pd,n}^{\circ}$ in case of concrete splitting failure of a single anchor

Thread size	,,,p		M6x30	M8×30	M8x40	M10x40	M12x50	M16x65	M20x80
							M12×80	M16x80	
Effective anchorage depth	h _{ef}	[mm]	30	30	40	40	50	65	80
Non-cracked concrete									
Design splitting resistance	N ⁰ _{Rd,sp}	[kN]	5.4	5.4	6.0	8.3	11.6	17.2	23.5

Table 10: Characteristic edge distance c and spacing s

Thread size			M6x30	M8x30	M8x40	M10x40	M12x50	M16x65	M20x80
							M12x80	M16x80	
Effective anchorage depth	h _{ef}	[mm]	30	30	40	40	50	65	80
Characteristic Spacing	S _{cr, sp}	[mm]	160	190	190	270	330	400	520
Characteristic Edge Distance	C _{cr, sp}	[mm]	80	95	95	135	165	200	260
Minimum Member Thickness	h _{min}	[mm]	100	100	100	130	140	160	250

a. Influence of concrete strength

Table 11: Influence of concrete strength on splitting resistance

Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

 $^{^{1]}}$ strength at 28 days of 150 mm diameter by 300 mm cylinders

²⁾ strength at 28 days of 150 mm cubes

b. Influence of spacing

$$f_{sx,sp} = f_{sy,sp} = \left(1 + \left(n_{x(y)} - 1\right) \frac{s_{x(y)}}{s_{cr,sp}}\right) \cdot \frac{1}{n_{x(y)}} \le 1$$

Table 12: Influence of spacing on splitting resistance

Number of fixing per direction	s/s _{cr,sp} ¹⁾	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
2	f f sx,sp , sy,sp	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00
3	f f sx,sp , sy,sp	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73	0.77	0.80	0.83	0.80	0.83	0.93	0.97	1.00
4	f sx,sp , f sy,sp	0.33	0.36	0.40	0.44	0.48	0.51	0.55	0.59	0.63	0.66	0.70	0.74	0.78	0.81	0.78	0.81	0.93	0.96	1.00
5	f f sx,sp , sy,sp	0.28	0.32	0.36	0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.76	0.80	0.92	0.96	1.00

¹⁾ Choose always the lowest value of the spacing s, when there are different spacings in one row

c. Influence of edge distance

$$f_{cx,1,sp} = 0.7 + 0.3 \frac{c_x}{c_{cr,sp}} \le 1 \qquad \qquad f_{cx,2,sp} = f_{cy,sp} = \left(1 + \frac{c_{x(y)}}{c_{cr,sp}}\right) \cdot \frac{1}{2} \le 1$$

Table 13: Influence of edge distance on splitting resistance

c/c _{cr,sp}	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.70	0.75	0.90	0.95	≥ 1.0
f _{cx,1,sp}	0.73	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.85	0.87	0.88	0.90	0.91	0.93	0.91	0.93	0.97	0.99	1.00
f _{cx,2, sp}	0.55	0.58	0.60	0.63	0.65	0.68	0.70	0.73	0.75	0.78	0.80	0.83	0.85	0.88	0.85	0.88	0.95	0.98	1.00

d. Influence of concrete member thickness

$$f_h = \left(\frac{h}{h_{min}}\right)^{2/3} \le max\left(1; \left(\frac{h_{ef} + 1.5c_1}{h_{min}}\right)^{2/3}\right)$$

Table 14: Influence of concrete member thickness on splitting resistance

h/h _{min}	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.30	2.40	2.70	2.80	2.90
f _h	1.00	1.07	1.13	1.19	1.25	1.31	1.37	1.42	1.48	1.53	1.59	1.64	1.69	1.74	1.79	1.74	1.79	1.94	1.99	2.00

II. Shear loading

The decisive design resistance in shear is the lowest value of the following failure modes:

1. Steel failure $V_{{\scriptscriptstyle Rds}}$

2. Concrete pry-out failure $V_{Rd,c} = k \cdot N_{Rd,c}$

 $\text{3. Concrete edge failure } \qquad V_{\mathit{Rd,c}} = \ V_{\mathit{Rd,c}}^{\mathit{0}} \cdot f_{\mathit{b,V}} \cdot f_{\mathit{s,V}} \cdot f_{\mathit{c2.V}} \cdot f_{\mathit{a}} \cdot f_{\mathit{h}}$

1. Design steel shear resistance

Table 15: Design value of steel resistance V_{Rds} of a single anchor

Thread size			M6x30	M8×30	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20×80
Effective anchorage depth	h _{ef}	[mm]	30	30	40	40	50	65	80
Design steel resistance	V _{Rd,s}	[mm]	4.5	6.8	6.8	8.6	16.1	26.9	42.6

2. Concrete pry-out resistance

 $V_{_{Rd,c}} = k_{_{\mathcal{B}}} \cdot N_{_{Rd,c}}$

Table 16: factor $k_{\rm g}$ for calculating design pry-out resistance

Thread size			M6x30	M8x30	M8x40	M10x40	M12×50	M16x65	M20x80
							M12x80	M16x80	
Effective anchorage depth	h _{ef}	[mm]	30	30	40	40	50	65	80
Concrete pry-out resistance factor	k ₈	[-]	1.0	1.7	1.7	1.7	1.7	2.0	2.0

3. Concrete edge resistance

$$V_{\rm Rd,c} = V_{\rm Rd,c}^0 \cdot f_{\rm b,V} \cdot f_{\rm s,V} \cdot f_{\rm c2,V} \cdot f_{\rm a} \cdot f_{\rm h}$$

Verification of concrete edge failure may be omitted for single fasteners and groups with an edge distance in all directions $c \ge max$ (10 h_{ef} ; 60 d). For anchorages with more than one edge, the resistance for all edges shall be calculated. The smallest value should be used in the verification.

Table 17: Design resistance $V_{p,1}^0$ in case of concrete edge failure

Thread size	M6x30	M8×30	M8×40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
h _{ef} [mm]	30	30	40	40	50	65	80
Edge distance c ₁		I	1	V ⁰ _{Rd,c}		I.	
[mm]				[kN]			
[]				non-cracked concret	to .		
00	7.0			I I I I I I I I I I I I I I I I I I I	1		
80	7.2	-	-	-	-	-	-
85	7.8	-	-	-	-	-	-
90	8.5	-		-	-	-	-
95	9.2	9.4	9.7	-	-	-	-
100	9.8	10.1	10.4	-	-	-	-
110	11.3	11.5	11.9	-	-	-	-
120	12.7	13.0	13.4	-	-	-	-
130	14.2	14.5	15.0	-	-	-	-
140	15.8	16.1	16.7	17.0	-	-	-
150	17.4	17.8	18.3	18.7	-	-	-
160	19.1	19.5	20.1	20.4	-	-	-
170	20.8	21.2	21.9	22.2	23.4	-	-
180	22.6	23.0	23.7	24.1	25.3	-	-
190	24.4	24.8	25.6	26.0	27.2	-	-
200	26.2	26.7	27.5	27.9	29.3	31.2	-
250	36.1	36.6	37.6	38.2	39.9	42.4	-
300	46.8	47.5	48.8	49.4	51.5	54.5	57.3
350	58.4	59.2	60.7	61.5	63.9	67.5	70.8
400	70.8	71.7	73.4	74.4	77.2	81.2	85.0
450	83.9	85.0	86.9	87.9	91.1	95.8	100.0
500	-	98.9	101.1	102.2	105.8	111.0	115.8
550	-	113.5	115.9	117.2	121.1	126.9	132.1
600	-	128.6	131.3	132.7	137.1	143.4	149.2
650	-	-	-	148.9	153.7	160.5	166.8
700	-	-	-	165.6	170.8	178.2	185.0
750	-	-	-	-	188.5	196.5	203.8
800	-	-	-	-	206.7	215.3	223.2
850	-	-	-	-	225.5	234.6	243.0
900	-	-	-	-	244.7	254.5	263.4
950	-	-	-	-	-	274.8	284.3
1000	-	-	-	-	-	295.6	305.6
1100	-	-	-	-	-	338.6	349.7
1200	-	-	-	-	-	383.4	395.6
1300	-	-	-	-	-	-	443.2
1400		-	-	-	-	-	492.4
1500		_	_		-	-	543.2

a. Influence of concrete strength

Table 18: Influence of concrete strength on concrete edge resistance

and the initial of th											
Concrete strength classes (EN 206:2000)			C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Characteristic compressive strength of concrete determined by testing cylinders ¹⁾	f _{ck}	[N/mm²]	12	16	20	25	30	35	40	45	50
Characteristic compressive strength of concrete determined by testing cube ²⁾	f _{ck,cube}	[N/mm²]	15	20	25	30	37	45	50	55	60
Influencing factor	$f_{b,N}$	[-]	0.77	0.89	1.00	1.10	1.22	1.32	1.41	1.50	1.58

¹⁾ strength at 28 days of 150 mm diameter by 300 mm cylinders

b. Influence of spacing

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

$$f_{s,V} = \frac{1}{3} \cdot \frac{s}{c_1} + 1 \le 2$$

Table 19: Influence of spacing on concrete edge resistance

s/c ₁ ¹⁾	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	2.60	2.80
f _{s,V}	1.17	1.20	1.23	1.27	1.30	1.33	1.40	1.47	1.53	1.60	1.67	1.73	1.80	1.87	1.93	1.87	1.93

¹⁾ Always choose the lowest value of the spacing s, when there are different spacing in the row closest to the edge.

c. Influence of edge distance

In groups loaded perpendicular to the edge only two adjacent anchors closest and parallel to the edge carry the load. The smallest spacing should be used for the verification.

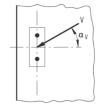
$$f_{c2,V} = \left(\frac{1}{2} + \frac{1}{3} \frac{c_2}{c_1}\right) \left(0.7 + 0.3 \frac{c_2}{1.5 c_1}\right)$$

Table 20: Influence of edge distance on concrete edge resistance

c ₂ /c ₁ ¹⁾	1	1.1	1.2	1.3	1.4	1.5
f _{c,V}	0.75	0.80	0.85	0.90	0.95	1.00

¹⁾ Distance to the second edge: $c_1 \le c_2$

²⁾ strength at 28 days of 150 mm cubes


d. Influence of load direction

$$f_{\alpha} = \sqrt{\frac{1}{\cos^2 \alpha_V + \left(\frac{\sin \alpha_V}{2}\right)^2}} \le 2$$

Table 21: Influence of load direction on concrete edge resistance

α1)	0	10	20	30	40	50	60	70	80	90
$f_{\alpha,V}$	1.00	1.01	1.05	1.11	1.20	1.34	1.51	1.72	1.92	2.00

¹⁾ For $a \ge 90^{\circ}$ the component of the shear load acting away from the edge may be neglected and the verification may be done with component acting parallel to the edge only.

e. Influence of concrete member thickness

$$f_{h,V} = \left(\frac{h}{1.5c_1}\right)^{1/2}$$

Table 22: Influence of concrete member thickness on concrete edge resistance

h/c ₁	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	≥ 1.50
f _{h,V}	0.26	0.37	0.45	0.52	0.58	0.63	0.68	0.73	0.77	0.82	0.86	0.89	0.93	0.97	1.00

Structural verification

 N_{Ed} = Design value of tension load acting on a fastener

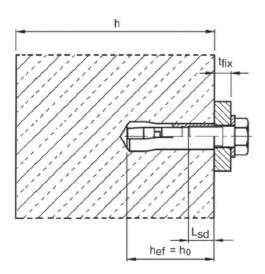
V_{Ed} = Design value of a shear load acting on a fastener

	Failure mode	Verification
1	Steel failure of fastener 1)	$ \left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \leq 1 $ If N_{Ed} and V_{Ed} are different for the individual fasteners of the group, the interaction shall be verified for all fasteners.
2	Failure modes other than steel failure	$\begin{split} &\left(\frac{N_{Ed}}{N_{Rd,i}}\right)^{1.5} + \left(\frac{V_{Ed}}{V_{Rd,i}}\right)^{1.5} \leq 1 \\ &\text{or} \\ &\left(\frac{N_{Ed}}{N_{Rd,i}}\right) + \left(\frac{V_{Ed}}{V_{Rd,i}}\right) \leq 1.2 \\ &\text{With N}_{Ed} \ / \ N_{Rd,i} \leq 1 \ \text{and V}_{Ed} \ / \ V_{Rd,i} \leq 1 \\ &\text{The largest value of N}_{Ed} \ / \ N_{Rd,i} \ \text{and V}_{Ed} \ / \ V_{Rd,i} \ \text{for the different failure modes shall be taken.} \end{split}$

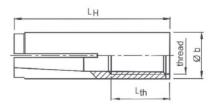
¹⁾ This verification is not required in case of shear load with lever arm

Mechanical characteristics

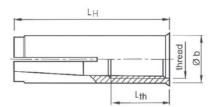
Thread size	Thread size			M8x30	M8x40	M10x40	M12x50	M16x65	M20×80	M16x65	M16x80	M20×80
							M12x80	M16x80				
Screw												
Stressed cross section	A _s	[mm ²]	20.1	36.6	58.0	84.3	156.7	244.8	84.3	156.7	156.7	244.8
Section Modulus	W _{el}	[mm ³]	12.7	31.2	62.3	109.1	276.6	540.2	109.1	276.6	276.6	540.2
Design bending moment (A4-70)	M ^O _{Rd,s}	[Nm]	6.9	16.9	33.6	58.9	149.3	291.7	31.4	79.7	79.7	155.6
Design bending moment (A4-80)	M _{Rd,s}	[Nm]	9.2	22.5	44.8	78.5	199.1	388.9	39.3	99.6	99.6	194.5
Sleeve												
Stressed cross section	A _s	[mm ²]	23.7	30.1	38.3	71.7	119.7	190.0	71.7	119.7	119.7	190.0
Section Modulus	W	[mm ³]	35.5	59.1	93.2	212.2	473.9	940.7	212.2	473.9	473.9	940.7
Yield strength	f _{yk}	[N/ mm²]	640	640	600	450	450	450	480	420	420	420
Tensile strength	f _{uk}	[N/ mm²]	800	800	750	700	700	700	600	560	560	560
Design bending moment	M ^O _{Rd,s}	[Nm]	27.3	45.4	67.1	114.6	255.9	508.0	122.3	238.8	238.8	474.1


Material specifications

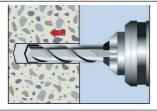
Part	Stainless steel A4	High corrosion resistant steel HCR						
Anchor sleeve	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Property class 70, acc. to EN ISO 3506:2010	Stainless steel, 1.4529, 1.4565, EN 10088:2005, Property class 70, acc. to EN ISO 3506:2010						
Cone	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005							



Installation parameters


Thread size			M6x30	M8x30	M8x40	M10x40	M12×50	M12×80	M16x65	M16x80	M20×80	M20x80
Depth of drill hole	h _o	[mm]	30	30	40	40	50	80	65	80	80	80
Nominal drill hole diameter	d _o	[mm]	8	10	10	12	15	15	20	20	25	25
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8.45	10.45	10.45	12.5	15.5	15.5	20.55	20.55	25.55	25.55
Installation torque	T _{inst} ≤	[Nm]	4	8	8	15	35	35	60	60	120	120
Diameter of clearance in hole in the fixture	d _f ≤	[mm]	7	9	9	12	14	14	18	18	22	22
Available thread length	L _{th}	[mm]	13	13	20	15	18	45	23	38	34	34
Minimum screw-in depth	L _{sd,min}	[mm]	7	9	9	11	13	13	18	18	22	22
Minimum thick- ness of member	h _{min}	[mm]	100	100	100	130	140	140	160	160	250	250
Minimum spacing	S _{min}	[mm]	50	60	80	100	120	120	150	150	160	160
Minimum edge distance	C _{min}	[mm]	80	95	95	135	165	165	200	200	260	260

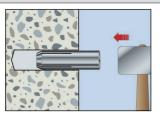
Anchor version without shoulder


Anchor version with shoulder Type BND

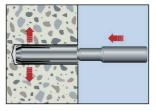
Installation instructions

A) Bore hole drilling

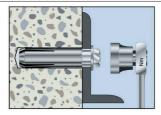
1a. Hammer (HD) or compressed air drilling (CD)


Drill the hole with a hammer drill. Drill bit diameter and its working length are determined by the diameter and depth of the drill hole of the selected anchor.

B) Bore hole cleaning



2. Clean the bore hole from the bottom until the return air stream is dust free.


C) Setting the screw

3a. Drive the anchor with some hammer strike or with the machine setting tool into the drill hole. Ensure the specified embedment depth.

3b. Drive in cone by using setting tool. Shoulder of setting tool must fit on anchor rim.

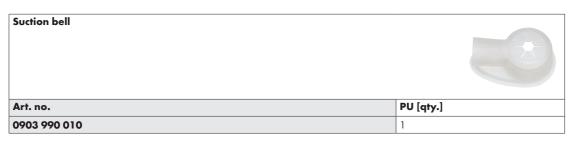
3c. Apply the required torque moment using a calibrated torque wrench.

ACCESSORIES

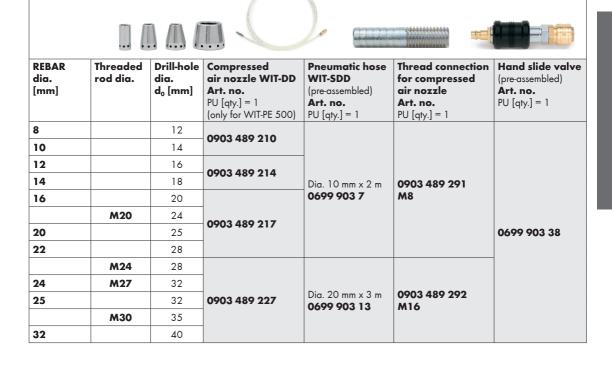
ACCESSORIES

Drill-hole cleaning

	leaning brus in thread M8	sh for concre		WIT-UH 300, WIT-PE 1000, WIT-VM 250, WIT-PE 510				
			<i> </i>					
Thread size	Rebar size	Drill-hole dia. d _o	Cleaning brush Art. no. PU [qty.] = 1	Extension Art. no. PU [qty.] = 1	Machine chuck M8 SDS-Plus PU [qty.] = 1			
M8	-	10	0903 489 510					
M10	Ø 8	12	0903 489 512					
M12	Ø 10	14	0903 489 514					
-	Ø 12	16	0903 489 516					
M16	Ø 14	18	0903 489 518					
-	Ø 16	20	0903 489 520	0005 400 111	2000 400 101			
M20		22	0903 489 522	0905 489 111	0903 489 101			
-	Ø 20	25	0903 489 525					
M24	-	28	0903 489 528					
	Ø 24/25	32	0903 489 532					
M30	Ø 28	35	0903 489 535					
-	Ø 32	40	0903 489 540					


WIT-RMB - C Connection			rete, masonry, an		D, WIT-PE 1000,
			MUSIUM COMPANY	WIT-VM 25	0, WIT-PE 510, WIT-VIZ
Thread size	Rebar size	Drill-hole dia. d _o	Cleaning brush Art. no. PU [qty.] = 1	Handle Art. no. PU [qty.] = 1	Machine chuck M6 PU [qty.] = 1
M8		10	0903 489 610		
M10/M12	Ø 8	12	0903 489 612		
M12	Ø 10	14	0903 489 614		
M12	Ø 12	16	0903 489 616		
M16	Ø 14	18	0903 489 618		hexagonal:
-	Ø 16	20	0903 489 620	0005 400 103	0905 499 101
M20		22	0903 489 622	0905 499 103	SDS plus:
M20		24	0903 489 624		0905 499 102
M24	Ø 20	26	0903 489 626		
M24	Ø 22	28	0903 489 628		
M27	Ø 24/25	32	0903 489 632		
M30	Ø 28	35	0903 489 635		

^{*}Please check the Online-Shop for products related to masonry



M8 reducer pipe To reduce the diameter of the blow out pump from 10 mm to 8 mm	
Art. no.	PU [qty.]
0905 499 202	1

Accessories for cleaning with compressed air

ACCESSORIES

Mortar injection

Piston plug (only REBAR)

WIT-UH 300, WIT-PE 1000, WIT-VM 250, WIT-PE 510

REBAR dia.	Piston plug	Drill-hole dia. HD = Hammer drilling	Piston plug	Art. no.	PU [qty.]
[mm]		CD = Compressed air drilling	140.		[dià.]
[]		HDB = Hollow drill bit system			
		DD = Diamond drilling			
8	-	d_o = 10 mm (HD, HDB, DD)	-	Natusaviusal	-
•	-	d_o = 12 mm (HD, HDB, DD)	-	Not required	-
10	-	d_o = 12 mm (HD, HDB, DD)	-	Not required	-
10	WIT-VS 14	d_o = 14 mm (HD, HDB, DD)	No. 14	0903 488 055	
12	WIT-VS 14	d_o = 14 mm (HD, HDB, DD)	No. 14	0903 488 055	
12	WIT-VS 16	d_o = 16 mm (HD, CD, HDB, DD)	No. 16	0903 488 056	
14	WIT-VS 18	d_o = 18 mm (HD, CD, HDB, DD)	No. 18	0903 488 057	
16	WIT-VS 20	d _o = 20 mm (HD, CD, HDB, DD)	No. 20	0903 488 058	
20 WIT-VS 25	WIT-VS 25	d _o = 25 mm (HD, HDB, DD)	No. 25	0903 488 059	
20	WII-V3 23	d_o = 26 mm (CD)	140. 23		10
22	WIT-VS 28	d _o = 28 mm (HD, CD, HDB, DD)	No. 28	0903 488 052	
24	WIT-VS 32	d_o = 32 mm (HD, CD, HDB, DD)	No. 32	0903 488 053	
25	WIT-VS 32	d_o = 32 mm (HD, CD, HDB, DD)	No. 32	0903 488 053	
28	WIT-VS 35	d_o = 35 mm (HD, CD, HDB, DD)	No. 35	0903 488 060	
32	WIT-VS 40	d_o = 40 mm (HD, CD, HDB, DD)	No. 40	0903 488 061	
34	WIT-VS 40	d_o = 40 mm (HD, CD, HDB, DD)	No. 40	0903 488 061	
36	WIT-VS 45	d_o = 45 mm (HD, CD, DD)	No. 45	Special request	-
40	WIT-VS 52	d_o = 52 mm (HD, CD)	No. 52	Special request	-
70	WIT-VS 55	d_o = 55 mm (HD, CD)	No. 55	Special request	-

Mixer nozzles				
	Suitable for cartri	dge size	Art. no.	PU [qty.]
Mixer nozzle for WIT-VM 250	coaxial (1:10): foil-tube (1:10):	150 ml 330 ml 420 ml 300 ml	0903 420 001	10
Mixer nozzle for WIT-PE 1000, WIT-PE 510 & WIT-UH 300	coaxial (1:10): peeler (1:10): side-by-side (1:10): side-by-side (1:3):	320 ml 420 ml 280 ml 360 ml 825 ml 440 ml 585 ml	0903 488 103	20

Extensions for mixer nozzles		
	Art. no.	PU [qty.]
Mixer nozzle extension – rigid WIT-MV 10 x 200 mm	0903 420 004	10
Mixer nozzle extension – rigid WIT-MV 10 x 2000 mm	0903 488 121	20
Mixer nozzle extension – flexible, WIT-MV 10 x 2000 mm	0903 488 123	10
Mixer nozzle extension – rigid, WIT-MV 16 x 2000 mm	0903 488 122	20
Mixer nozzle extension – flexible, WIT-MV 16 x 2000 mm	0895 812	1

Application guns

Application guns, manual				
		Suitable for cartridges	Art. no.	PU [qty.]
Application gun WIT, 330 ml	WURTH	coaxial (1:10): 150 ml, 320 ml, 330 ml foil-tube (1:10): 300 ml	0891 003	
Application gun HandyMax		coaxial (1:10): 150 ml, 330 ml foil-tube (1:10): 300 ml	0891 007	
Application gun for foil-tube		foil-tube (1:10): 300 ml	0891 000 001	1
Application gun WIT, 420 ml		coaxial (1:10): 420 ml	0891 038 0	
Application gun WIT-Multi		coaxial (1:10): 150 ml, 320 ml, 330 ml, 420 ml foil-tube (1:10): 300 ml side-by-side (1:3): 385 ml, 440ml, 585 ml	0891 003 105	

ACCESSORIES

Application gun, cordless					
		Suitable for cartridges		Art. no.	PU [qty.]
		coaxial (1:10): foil-tube (1:10):	150 ml, 330 ml 300 ml	0891 003 330*	
Cordless application gun		coaxial (1:10):	420 ml	0891 003 420*	1
WIT		side-by-side (1:3):	385 ml, 585 ml	0891 003 585*	
	The state of the s	side-by-side (1:10)	: 825 ml	0891 003 825*	

Memory function: By actuating the memory function, the application gun repeats a pre-recorded application cycle, ensuring that exactly the right quantity of mortar is injected into the drill hole in series application

Adjustable speed :Infinitely controllable with adjustment wheel in handle * incl. battery and charger 18 V 2.0 Ah-Li-lon (in case)

3,	pplication guns, pneumatic		Suitable for cartridges		PU [qty.]
		side-by-side (1:3):	385 ml, 585 ml	0891 017	
Pneumatic application		side-by-side (1:3):	1400 ml	0891 015	
gun		coaxial (1:10):	420 ml	0891 004 420	
		side-by-side (1:10):	825 ml	0891 004 825	

	Suitable for application gun	Art. no.	PU [qty.]
Female thread plug-in nipple series 2000	Pneumatic application gun 385, 585, 1400, 420,825 ml	0699 100 514	1

ANCHOR DESIGN MANUAL

Adolf Würth GmbH & Co. KG 74650 Künzelsau Telefon +49 7940 15-0 Telefax +49 7940 15-1000 www.wuerth.de info@wuerth.com © by Adolf Würth GmbH & Co.KG Printed in Germany. All rights reserved. Responsible for content: Dept. IDB/Raseem Khouja Dept. 1 GBWX/Dr. Jochen Buhler Final Editor: Dept. MWC/Jörg Rathfelder Reprinting subject to approval. MWC - BH - H01170 - 06/21 Printed on recycled paper.

We reserve the right to make changes to products that we consider to be for the purposes of improving quality without prior notice and at any time. Illustrations may be examples; the goods delivered may appear different than these illustrations. Subject to errors; we assume no liability for printing errors. Our general terms and conditions of business apply.